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Basic Idea – Linearize

Find an expression of the following form with a high probability of
occurrence.

Pi1 ⊕ · · · ⊕ Pip ⊕ Cj1 ⊕ · · · ⊕ Cjc = Kℓ1,s1 ⊕ · · · ⊕ Kℓk ,sk

Each random plaintext/ciphertext pair gives an estimate of

Kℓ1,s1 ⊕ · · · ⊕ Kℓk ,sk

Collect many pairs and make a better estimate based on the
majority vote.
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How do we come up with the desired expression?

How do we compute the required number of
samples?
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Bias

Definition. The bias ǫ(X ) of a binary random
variable X is defined by

ǫ(X ) = Pr [X = 0]−
1

2
.
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Bias

Definition. The bias ǫ(X ) of a binary random
variable X is defined by

ǫ(X ) = Pr [X = 0]−
1

2
.

≈ 1/ǫ2(X ) samples are required to estimate X

(Matsui)
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Linear Approximation of S-Box (1/3)

Let X and Y be the input and output of an S-box, i.e.

Y = S(X ) .

We consider the bias of linear combinations of the form

a · X ⊕ b · Y =

(

⊕

i

aiXi

)

⊕

(

⊕

i

biYi

)

.

DD2448 Foundations of Cryptography February 3, 2016



Linear Approximation of S-Box (1/3)

Let X and Y be the input and output of an S-box, i.e.

Y = S(X ) .

We consider the bias of linear combinations of the form

a · X ⊕ b · Y =

(

⊕

i

aiXi

)

⊕

(

⊕

i

biYi

)

.

Example: X2 ⊕ X3 = Y1 ⊕ Y3 ⊕ Y4

The expression holds in 12 out of the 16
cases. Hence, it has a bias of
(12 − 8)/16 = 4/16 = 1/4.
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Linear Approximation of S-Box (2/3)

◮ Let NL(a, b) be the number of zero-outcomes of a · X ⊕ b · Y .

◮ The bias is then

ǫ(a · X ⊕ b · Y ) =
NL(a, b)− 8

16
,

since there are four bits in X , and Y is determined by X .
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Linear Approximation Table (3/3)

NL(a, b)− 8
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This gives linear approximation for one round.

How do we come up with linear approximation for more rounds?
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Piling-Up Lemma

Lemma. Let X1, . . . ,Xt be independent binary random variables
and let ǫi = ǫ(Xi). Then

ǫ

(

⊕

i

Xi

)

= 2t−1
∏

i

ǫi .

Proof. Case t = 2:

Pr [X1 ⊕ X2 = 0] = Pr [(X1 = 0 ∧ X1 = 0) ∨ (X1 = 1 ∧ X1 = 1)]

= (
1

2
+ ǫ1)(

1

2
+ ǫ2) + (

1

2
− ǫ1)(

1

2
− ǫ2)

=
1

2
+ 2ǫ1ǫ2 .

By induction Pr [X1 ⊕ · · · ⊕ Xt = 0] = 1
2 + 2t−1

∏

i ǫi
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Linear Trail

Four linear approximations with |ǫi | = 1/4

S12 : X1 ⊕ X3 ⊕ X4 = Y2

S22 : X2 = Y2 ⊕ Y4

S32 : X2 = Y2 ⊕ Y4

S34 : X2 = Y2 ⊕ Y4

Combine them to get:

U4,6⊕U4,8⊕U4,14⊕U4,16⊕P5⊕P7⊕P8 =
⊕

Ki ,j

with bias |ǫ| = 24−1(14)
4 = 2−5
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Attack Idea

◮ Our expression (with bias 2−5) links plaintext bits to input
bits to the 4th round

◮ Partially undo the last round by guessing the last key. Only 2
S-Boxes are involved, i.e., 28 = 256 guesses

◮ For a correct guess, the equation holds with bias 2−5. For a
wrong guess, it holds with bias zero (i.e., probability close to
1/2).
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Attack Idea

◮ Our expression (with bias 2−5) links plaintext bits to input
bits to the 4th round

◮ Partially undo the last round by guessing the last key. Only 2
S-Boxes are involved, i.e., 28 = 256 guesses

◮ For a correct guess, the equation holds with bias 2−5. For a
wrong guess, it holds with bias zero (i.e., probability close to
1/2).

Required pairs 210 ≈ 1000
Attack complexity 218 ≪ 232 operations

DD2448 Foundations of Cryptography February 3, 2016



Linear Cryptanalysis Summary

1. Find linear approximation of S-Boxes.

2. Compute bias of each approximation.

3. Find linear trails.

4. Compute bias of linear trails.

5. Compute data and time complexity.

6. Estimate key bits from many plaintext-ciphertexts pairs.

Linear cryptanalysis is a known plaintext attack.
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Ideal Block Cipher
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Negligible Functions

Definition. A function ǫ(n) is negligible if for every constant
c > 0, there exists a constant n0, such that

ǫ(n) <
1

nc

for all n ≥ n0.

Motivation. Events happening with negligible probability can not
be exploited by polynomial time algorithms! (they “never” happen)
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Pseudo-Random Function

“Definition”. A function is pseudo-random if no efficient
adversary can distinguish between the function and a random
function.
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Pseudo-Random Function

“Definition”. A function is pseudo-random if no efficient
adversary can distinguish between the function and a random
function.

Definition. A family of functions F : {0, 1}k × {0, 1}n → {0, 1}n

is pseudo-random if for all polynomial time oracle adversaries A

∣

∣

∣

∣

Pr
K

[

A
FK (·) = 1

]

− Pr
R:{0,1}n→{0,1}n

[

A
R(·) = 1

]

∣

∣

∣

∣

is negligible.
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Pseudo-Random Permutation

“Definition”. A permutation and its inverse is pseudo-random if
no efficient adversary can distinguish between the permutation and
its inverse, and a random permutation and its inverse.
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Pseudo-Random Permutation

“Definition”. A permutation and its inverse is pseudo-random if
no efficient adversary can distinguish between the permutation and
its inverse, and a random permutation and its inverse.

Definition. A family of permutations
P : {0, 1}k × {0, 1}n → {0, 1}n are pseudo-random if for all
polynomial time oracle adversaries A

∣

∣

∣

∣

Pr
K

[

A
PK (·),P

−1
K

(·) = 1
]

− Pr
Π∈S2n

[

A
Π(·),Π−1(·) = 1

]

∣

∣

∣

∣

is negligible, where S2n is the set of permutations of {0, 1}n .
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Idealized Four-Round Feistel Network

Definition. Feistel round (H for “Horst Feistel”).

HFK
(L,R) = (R , L⊕ F (R ,K ))
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Idealized Four-Round Feistel Network

Definition. Feistel round (H for “Horst Feistel”).

HFK
(L,R) = (R , L⊕ F (R ,K ))

Theorem. (Luby and Rackoff) If F is a pseudo-random family of
functions, then

HFk1
,Fk2

,Fk3
,Fk4

(x) = HFk4
(HFk3

(HFk2
(HFk1

(x))))

(and its inverse) is a pseudo-random family of permutations.
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Idealized Four-Round Feistel Network

Definition. Feistel round (H for “Horst Feistel”).

HFK
(L,R) = (R , L⊕ F (R ,K ))

Theorem. (Luby and Rackoff) If F is a pseudo-random family of
functions, then

HFk1
,Fk2

,Fk3
,Fk4

(x) = HFk4
(HFk3

(HFk2
(HFk1

(x))))

(and its inverse) is a pseudo-random family of permutations.

Why do we need four rounds?
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