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EP2200 Queueing theory and teletraffic 
systems 
 
Lectures 5-7 

Summary of M/M/*/* systems 

Viktoria Fodor 
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M/M/*/* systems 

• Poisson arrival, Exponential service time 

 

• M/M/1 

• M/M/1/K 

• M/M/m/m (Erlang loss system) 

• M/M/m (Erlang wait system) 

• M/M/m/m/C (Engset loss system) 
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M/M/1 

• Single server, infinite waiting room 

• Service times are exponentially distributed 

• Arrival process Poisson 

– Models a large population of independent customers  

– Each customer generates requests with low rate 

– The total arrival process tends towards a Poisson process  

• The queueing system can be modelled by a homogeneous birth-

death process 
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• Total transition rates from one part of the chain must balance the 
transition rates from the other part in stationarity 
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Local balance equations 
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Performance results 

• The system is in state k with probability pk=(1-r)rk 

• An arriving customer finds k customers in the system with 
probability pk 

–PASTA: Poisson Arrivals See Time Averages 

• Expected number of customers in the system is N=r/(1-r) 

–Time measures by Little’s law 

• System and Waiting time distribution 

– In transform domain and in time domain  
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M/M/1/K systems 

• Poisson arrival, exponential service time, 1 server, finite buffer 
capacity 

• State transition diagram: 

– K+1 states 

– λi=λ, for i ≤ K  

– μi=μ, for i > 0  

• State probabilities in equilibrium and blocking probability from 
the local balance equations 
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M/M/m/m - loss systems 
(Erlang loss systems) 

 

• Poisson arrival, exponential service time, m identical servers,  
no buffer,  

• Offered load: a=λ/μ 

• State transition diagram: 
– m+1 states 

– λi=λ 

– μi=iμ 

• State probabilities and performance measures 
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M/M/m systems  
(Erlang wait systems) 

• Poisson arrival, exponential service time, m identical and 
independent servers, infinite buffer capacity 

• Offered load a=λ/μ [Erlang], a<m for stability 

• State transition diagram: 

– infinite states 

– λi=λ 

– μi=iμ, for 0 < i ≤ m 

– μi=mμ, for i > m 

• Probability of waiting and waiting time distribution 
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(Erlang-C form) 



9 KTH EES/LCN 

M/M/m/m/C – finite population 
Engset loss system 

 

• Exponential service time, m identical servers, infinite buffer 
capacity 

• BUT: finite population – can not be modeled with state 
independent arrivals 

• Modeling a single user: 

– thinking time Exp(λ)  

– holding time (or service time) Exp(μ) 

– after blocked call new thinking time 

• Markov-chain model: 

–λi=(C-i)λ 

–μi=iμ 

–pi from the balance equations 
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M/M/m/m/C – finite population 
 

• Time blocking: the proportion of time in blocking state = pm 

• Call blocking: the probability that an arriving call gets blocked =am 

• Call blocking ≠ time blocking 
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• Effective load and average number of active users 
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