Homework assignments to Lecture 3.

1. Prove that the family of functions $1, \sqrt{2} \cos (2 \pi n x), n \geq 1$ and $\sqrt{2} \sin (2 \pi n x)$, $n \geq 1$ is a unit-perpendicular family in $L^{2}\left(S^{1}\right)$. Derive that a complex Fourier series can also be written i a real form

$$
f=\hat{f}_{e v}(0)+\sum_{n=1}^{\infty}\left(\hat{f}_{e v}(n) \sqrt{2} \cos (2 \pi n x)+\hat{f}_{o d d}(n) \sqrt{2} \sin (2 \pi n x)\right)
$$

where

$$
\begin{gathered}
\hat{f}_{e v}(0)=\int_{0}^{1} f(y) d y \\
\hat{f}_{e v}(n)=\sqrt{2} \int_{0}^{1} f(y) \cos (2 \pi n y) d y, n \geq 1
\end{gathered}
$$

and similarly for $\hat{f}_{\text {odd }}(n)$.
2. Assume that a sequence of numbers $\left(x_{n}\right)_{n \geq 1}$ has a limit $\lim _{n \rightarrow \infty} x_{n}=y$. Prove that a sequence of arithmetic means

$$
\sigma_{N}=\frac{1}{N}\left(x_{0}+x_{1}+\cdots+x_{N-1}\right)
$$

also has the same limit y.
3. Prove that for any f in $L^{2}\left(S^{1}\right)$ we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(x+\frac{k}{n}\right)=\hat{f}(0)=\int_{0}^{1} f
$$

where the limit is in sense of convergence in L^{2}.
Hint: compute Fourier coefficients of the sum and then use the Plancherel (Parseval) identity.

