KTH, Matematik, Serguei Shimorin

SF2705 Fourier Analysis Homework assignement for the Lecture 2

1. (4.2.6) Prove Minkowski's inequality $||f+g|| \le ||f|| + ||g||$, where ||f|| is the norm of f in the space $L^2(0,1)$.

2. (4.3.2) Assume that $(e_n)_{n\geq 1}$ is a unit-perpendicular family in $L^2(0,1)$ and that the sequence $c = (c_n)_{n \ge 1}$ is square summable i.e. $\sum_{n \ge 1} |c_n|^2 < \infty$. Prove that the series $\sum_{n\geq 1} c_n e_n$ converges in $L^2(0,1)$.

3. (4.3.4) Assume that $(e_n)_{n\geq 1}$ is a unit-perpendicular family in $L^2(0,1)$ and that $f \in L^{2}(0, 1)$. We define $\hat{f}(n) = (f, e_{n})$.

(1) Prove that

$$\left\| f - \sum_{k=1}^{n} \hat{f}(k) e_k \right\|^2 = \|f\|^2 - \sum_{k=1}^{n} |\hat{f}(k)|^2.$$

(2) Deduce Bessel's inequality $\sum_{k=1}^{n} |\hat{f}(k)|^2 \leq ||f||^2$. (3) Prove that $(e_n)_{n\geq 1}$ is a unit-perpendicular basis if and only if the Plancherel identity holds for any f

$$\sum_{k=1}^{\infty} |\hat{f}(k)|^2 = ||f||^2.$$

4. (4.3.5) Assume that $(e_n)_{n\geq 1}$ is a unit-perpendicular family in $L^2(0,1)$. Prove that this family spans the whole $L^2(0,1)$ if and only if the only function g which is orthogonal to all e_n is g = 0. Hint: analyse $g = f - \sum_n \hat{f}(n)e_n$.