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Outline for today

e Recall: Poisson process and Exponential distribution, Markov
process and Markov-chain

e Markov processes
— Continuous-time Markov-chains
— Graph and matrix representation
e Transient and steady state solutions
e Balance equations - local and global
e Pure Birth process — Poisson process as special case
e Birth-death process as special case

e QOutlook: Discrete time Markov-chains (compulsory for phd students)




Poisson process and exponential
distribution

e Poisson arrival process implies exponential interarrival times
e Exponential distribution is memoryless

number of arrivals | ——_, | interarrival time
Poisson distribution | + = = - | exponential

e For Poisson arrival process:
the time until the next arrival does not depend on the time

spent after the previous arrival

Poisson arrival (L)

- =
— Exp(0) oot

We start to follow the system from this point of time




Markov processes

e Stochastic process
= pi(t)=P(X(t)=i)
e The process is a Markov process if the future of the process depends
on the current state only - Markov property

- P(X(t,.)=J | X(t,)=i, X(t,.1)=1, ..., X(tx)=m) = P(X(t,.)=j | X(t,)=i)
- Homogeneous Markov process: the probability of state change is

unchanged by time shift, depends only on the time interval
P(X(tn+1)=j | X(tn)=l) = pij(tn+1-tn)
e Markov chain: if the state space is discrete

— A homogeneous Markov chain can be represented by a graph:

e States: nodes N
e State changes (transitions): edges
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Continuous-time Markov chains
(homogeneous case)

e Continuous time, discrete space stochastic process, with Markov
property, that is:

. . d p
P(X(t.) = 11X () =1, X(t,) =... X () =m) = ¢
I:)(X(tn+1)= J | X(tn)zl)’ t0 <t1<°'°<tn <tn+1 29 """" T “*
q i

e State transition can happen in any point of time
— number of packets waiting at the output buffer of a router
— number of customers waiting in a bank

e The time spent in a state has to be exponential to ensure Markov
property:
— the probability of moving from state j to state j sometime between

t, and t,,.; does not depend on the time the process already spent
in state / before ¢,.




Continuous-time Markov chains
(homogeneous case)

e State change probability: P(X(t,,;)=J | X(t,)=i) = p;(t,.:-t,)

e Characterize the Markov chain with the state transition rates instead:

g.= lim AAEF4r)= j|X(t)=i)’ i=j - rate (intensity) of state change
N At
g.=— > g. - defined to easy calculation later on
e
« Transition rate matrix Q:
- . =4
Uoo Yoz Uom o1 14
Q=| . Q‘G Qz[@ —6]
q(M—l)M
Ovo " AGumsy  Owm | q10=6
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Transient solution

e The transient - time dependent - state probability distribution
o p(t)={po(t), pi(t), ps(t),...} — probability of being in state / at time t,
given p(0).

P(X({t+At)= | X(t)=1)

g, = lim ~ P(X (t+At) = j| X (t) = i) = g, At + o(At)
p(t+80) = PO - PO 6,6+ Y p,a,At+o(aD, lim 22 <o
J#i J#i

~— _~ _
gl N

leaves the state arrives to the state

p; (t+At) — p; (t) = p; (1) At + > p (D)0 At + o(At) = Zp(t)q,.AHo(At) {—quq"}

j#i j#i

i(t+At)_pi(t):Zp_(t)q__+0( H dp(t) => p; (D)

At At
dp(t)
dt

= p(t)Q, p(t)=p(0)-e¥ Transient solution




Example — transient solution

ap@) _
Qo1= 14 P)Q = dp;(t) dt PR
Q:[_ ] (t) _ (O)d.tth Po' (1) = Po(t)Tgo + Py ()T,
© L 6 -6 PH=P p,"(t) = Py ()0, + P, (D)0,
Ji0= po(t)+ pl(t):]-
Transient Stationary / steady
stEEe staie
o b | Po(t)
| oo(t) \\0
- p,(t) - P (0)

1 0.4

A: py(0)=0, p,(0)=1 "B: po(0)=1, p;(0)=0




Stationary solution (steady state)

e Def: stationary state probability distribution (stationary solution)
- p= !I_To p(t) exists
- p is independent from p(0)

e The stationary solution p has to satisfy:

P(t)Q=dZ—§t)=0, D pit) =1 _qf)o 901 om |
0= : .

Qm-nym

_qMO qM(M—l) SIVIY |

@‘0 [p. pl]{_; _46} —[0.0] p,+p, =1

d10=6 P, =06, p, =04




Stationary solution (steady state)

Important theorems — without the proof

e Stationary solution exists, if
— The Markov chain is irreducible (there is a path between any two states)
- pQ=0, px1=1 has positive solution

e Equivalently, stationary solution exists, if
— The Markov chain is irreducible
— For all states: the mean time to return to the state is finite

e Finite state, irreducible Markov chains always have stationary solution.

e Markov chains with stationary solution are also ergodic:

- p; gives the probability that one out of many realizations are in state /j at
arbitrary point of time, and

— p; gives the portion of time a single realization spends in state i
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Balance equations

e How can we find the stationary solution? pQ=0

0=pQ =

State 1: (G +0G) G, O Gy
0= _(q12 + q14) P+ 0y P, 0y — 0y 0 0
Uy Py = (G + 0 Py - 0 J; —0p O
State 2 . B 0 O q43 - q43_

0=0,,P, — 0y P, + s, Ps
d;, pli_ O3, B3 :&pZ_J

flow in flow out

e Global balance conditions
— in equilibrium (for the stationary solution)

- the transition rate out of a state — or a group of states - must equal
the transition rate into the state (or states)

o flow in = flow out
— defines a global balance equation




Group work

e Global balance equation for state 1 and 2:

0=pQ =

State 1:

0= _(Q12 + q14) P+ 05,0,
0510, = (Gyy + ) Py .
State 2: )
0=0,P; =01 P, + 03, s

O12 Py + 03203 = 051 P;

e Is there a global balance equation for the circle around
states 1 and 2?




Balance equations

e Local balance conditions in equilibrium

- the local balance means that the total flow from one part of the chain
must be equal to the flow back from the other part

— for all possible cuts
- defines a local balance equation

— The local balance equation is the same as a global balance equation
around a set of states!




Balance equations

e Set of linear equations instead of a matrix equation

0=pQ =

0= Gi2P; =51 P2 + 05,0
Gi2P; + 035205 =0, 0,

— —— —

flow in flow out

e Global balance :

- flow in = flow out around a state
— or around many states
4.4 /i q

e |ocal balance equation:
— flow in = flow out across a cut
Qs34 =03, P53
e M states
— M-1 independent equations
- 2p;=1

1
1
1
1
1
1
1
1
1
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Pure birth process

e Continuous time Markov-chain, infinite state space
e Transitions occur only between neighboring states

- State independent birth intensity: 4. =4, Vi

Aa=A A=A 4 A0

T T 0 -2 2 0
i < i < _
0 0 0 -

e No stationary solution

e Transient solution (assume start from state zero):
— p(t)=P(system in state k at time t)
— number of events (births) in an interval t




Pure birth process

e Transient solution — number of events (births) in an interval (0,t]

T . ﬂ'k-].: ﬂ’k:ﬂ’ e \ __Z y) 0 T
&D kO &+D Q-0 H A

)

P'M)=pMQ, py(0)=1 p(0)=0 for k=0 00 0 -]

P’ (1) =—Ap, (1) S p () =e*
pll (t)= ﬂpo (1) —/1p1 t - p'l (t) = Ae t _/,Lpl(t) S (1) = e

(At)"
k!

e—lt

P\ (1) =Ap () —Ap () = p(t) =

e Pure birth process gives Poisson process! — time between state
transitions is Exp(A)




Equivalent definitions of Poisson process

1. Pure birth process with intensity 4
2. The number of events in period (0,t] has Poisson distribution with

parameter A4
3. The time between events is exponentially distributed with parameter 1

P(X <t)=1-e™"

pure birth process

previous sliyﬂ '\check in the binder

4

number of events = j---------- time between events

Poisson distribution exponential
revious lecture




Pure death process

e Continuous time Markov-chain, infinite state space
e Transitions occur only between neighboring states

- State independent death intensity: 4 = 4, Vi=O0

_____

e No stationary solution
e Pure death process gives Poisson process until reaching state 0

e Time between state transitions is Exp(u)
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Birth-death process

e Continuous time Markov-chain
e Transitions occur only between neighboring states

i—>i+1 birth with intensity A,
modells population
i—i-1 death with intensity p;, (for i>0)

~~~~~

I” ~~~~~~~ . Zk_l Ak I”— \\4
' 7’ 7
S~ _.- - i >\\ _-

__________ ﬂk -

o R T
__Zqu oz Qo2 ...| [—4 Ao 0 |
Q- Quo _qui Q12 el M — (A4 +m) A 0
Q20 (21 _ZQZJ' 0 M, —(hL+w) 4

e State holding time - length of time spent in a state k
- Until transition to states k-1 or k+1

— Minimum of the times to the first birth or first death — minimum of two
Exponentially distributed random variables: Exp(A,+ )




B-D process - stationary solution

Local balance equations, like for general Markov-chains
Stability: positive solution for p (since the MC is irreducible)

Cutl: A4, Py, = 1 Py

Cut2: 4, p = thyPn = Pea =
P =)
=Pk =———— Po =1 ——1p,,
Ay - = Hin
> =1 =
1
p0= 0 k-1 !
1+ > I1—
kZ=J:.i=0/ui+l

A
= P = —L Py_1
Hy

A A A,
— = Py = P

/uk+1 /uk+1 k

| |

ﬂ’k-l ﬂ’ki

| |

i i

-1

cutr K cura T

Group work: stationary solution for
state independent transition rates:

ﬂﬁzﬂ’ﬂizﬂ_




Markov-chains and queuing systems

e Why do we like Poisson and B-D processes?
How are they related to queuing systems?

— If arrivals in a queuing system can be modeled as Poisson
process — also as a pure birth process

— If services in a queuing systems can be modeled with
exponential service times — also as a (pure) death process

- Then the queuing system can be modeled as a birth-death
process




Summary — Continuous time Markov-chains

o Malrkovian property: next state depends on the present state
only

o State lifetime: exponential
e State transition intensity matrix Q
e Stationary solution: pQ=0, or balance equations

e Poisson process
— pure birth process (L)
— number of events has Poisson distribution, E[X]=At
— interarrival times are exponential E(z)=1/A
e Birth-death process: transition between neighboring states

e B-D process may model queuing systems!
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Discrete-time Markov-chains
(detour)

e Discrete-time Markov-chain: the time is discrete as well

- X(0), X(1), ... X(n), ...
— Single step state transition probability for homogeneous MC:
P(X(n+1)=j | X(n)=i) = py, vn

e Example

- Packet size from packet to packet
— Number of correctly received bits in a packet

— Queue length at packet departure instants ...
(get back to it at non-Markovian queues)




Discrete-Time Markov-chains

e Transition probability matrix:
— The transitions probabilities can be represented in a matrix

- Row i contains the probabilities to go from i to state j=0, 1, ..M
e P, is the probability of staying in the same state

Pom I Poo Por = Pom ]
\.., i b 2p=1 Vi
0 : . : j
Prmo B Pmo = Pum i




Discrete-Time Markov-chains

e The probability of finding the process in state j at time n is denoted by:

- pi™ = P(X(n) = J)
- for all states and time points, we have:

p™ = [p(n) IC,1(n) p&n)]

e The time-dependent (transient) solution is given by:

(n+1)

= PiPsi + Z p(n) pji = R
j#i
pT =pWP=p"IPP =...= pOp" ﬂ ./




Discrete-Time Markov-chains

e Steady (or stationary) state exists if
— The limiting probability vector exists
- And is independent from the initial probability vector

r'}'_([l p(n) :p:[po U pM]
e Stationary state probability distribution is give by:
M
p=pP, Y p =1 (p(’”l) =p(”>p)
j=0

e Note also:

— The probability to remain in a state j for m time units has geometric
distribution

m-1
Pj (1_ p,-,-)
— The geometric distribution is @ memoryless discrete probability
distribution (the only one)




