
Homework Assignment 1
SF2521, Spring 2016

Topics: Conservation laws, hyperbolic systems, Heat equation, finite
volume method, conservation, variable coefficients, boundary conditions.

1 Conservation laws (0.5 p)
1. Consider the Euler equations written in u = (ρ, ρv, E)

ρt + (ρv)x = 0 (Conservation of mass)
(ρv)t + (ρv2 + p)x = 0 (Conservation of momentum)
Et + (v(E + p))x = 0 (Conservation of energy)

where the pressure p is given by a known function of ρ, and is called
the constitutive relation of the system. Let u = (ρ, ρv, E) = (u1, u2, u3)
so

f(u) = (f1, f2, f3)
T = (u2, u

2
2/u1 + p(u), u2(u3 + p(u))/u1)

T .

Derived the linearized Euler’s equations. Computes the eigenvalues
and eigenvectors of ∂f/∂u dependent on dp/dρ. Derive the conditions
for hyperbolicity. Here, ∂f/∂u is the matrix

∂f1
∂u1

∂f1
∂u2

∂f1
∂u3

∂f2
∂u1

∂f2
∂u2

∂f2
∂u3

∂f3
∂u1

∂f3
∂u2

∂f3
∂u3

 .

2. Consider the transport equation in two dimensions

ut + a(x, y)ux + b(x, y)uy = 0.

Under which condition on a and b would the equation be a conservation
law?
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2 Heat equation
Purpose: This exercise builds on the basic course in numerical treatment
of differential equations. We will compute approximate solutions to a time-
dependent PDE on a 2D domain. Of particular interest is the derivation of
a basic finite volume method and how to represent the discrete problem in a
way that is practical for analysis and implementation.

Instructions: Hand in a written report no later than the deadline. Reports
should contain answers to all questions stated and proper motivation for each,
e.g. derivations. Append the code to the report.

Description: A classical example of a parabolic PDE is the heat equation
on a square. Let q ( x , y , t ) denote non-dimensional temperature. Then,

qt = ∇ · (∇q) + S (x, y) ∈ [0, 1]× [0, 1] (1)
q(x, y, 0) = 0 (2)

n · q = 0 (3)

where n is the outward unit normal to the boundary. We consider first a
smooth heat source

S(x, y) = exp

(
−(x− xs)2 + (y − y2s)

w2

)
centered at the point xs = (1/2, 1/2) with width w = 0.2. Second, we
consider a time-variable point heat source, which may be described by a
“Dirac-δ function”,

S(x, y, t) = δ(x− xs, y − ys)g(t)

g(t) =

{
2 t < 1/4

0 t ≥ 1/4

The boundary conditions (3) state that there is no heat flux across bound-
aries. Physically, we have a plate that is insulated from its surroundings and
initially at zero temperature. In the first case it is continuously heated with
a diffuse source in the middle. In the second case it is heated at a point for
0.25 seconds and then the source is turned off.
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2.1 Analytical preamble (0.5 p)

1. What is the flux vector for the heat equation (1)?

2. Determine Q(t) =
´ 1
0

´ 1
0
q(x, y, t)dxdy as a function of t.

Figure 1: Finite volume grid

3 Discretization and implementation (1.0 p)
LetQi,j denote the cell average of q over cell (i, j) (see Figure 1) and introduce
cell sizes ∆x and ∆y such that m∆x = n∆y = 1. The square is covered by
mn rectangular cells.

1. Derive a finite volume method for the spatial part of (1) by integrating
and forming cell averages. Take care that the source term gets included
correctly. Show that you obtain an expression of the form

d

dt
Qij = ∆5Qij + Sij i = 1, . . . ,m j = 1, . . . , n

where ∆5 is the classical five-point Laplacian stencil familiar from finite
difference methods. What stencils do you get at the boundaries?

2. Integrate in time using the first order implicit Euler scheme and state
the fully discrete problem. Why is this more appropriate to use the
implicit Euler scheme than using the explicit Euler scheme? Hint:
time-step restriction.
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3. Let Q be an m× n array that contains the Qij values. The Laplacian
can be expressed as

∆5Q = QTx + TyQ

where T represents the second derivative difference operator in 1D for
each dimension respectively. Why is this convenient? Hint: Boundary
conditions.

(a) Use this idea to state the fully discrete problem in matrix form.
(b) Prove that the finite volume scheme is exactly conservative.

4. Approximate the Dirac-δ function that appear in the source term by
δε(r) defined below, with r =

√
(x− xs)2 + (y − ys)2

δε(r) :=

{
1
2ε

(1 + cos(πr)), if r < ε,

0, otherwise.

Analytically, the smaller the value of ε > 0 is, the more accurate is the
approximation. In the next section, you will observe that numerical
approximation of δ via discretization of δε requires additional restirction
on the size of ε with respect to ∆x and ∆y. In your computations, unless
specified otheriwse, take ε =

√
max(∆x,∆y).

5. Implement the finite volume method, e.g. in Matlab. A linear system
has to be solved in each time-step. Due to the boundary conditions,
its coefficient matrix has a block diagonal structure (it is not simply
diagonal). Constructing it can be fairly hard in a Matlab program,
and possibly very computationally inefficient (see example in “Notes
on Efficient Matlab Programming"). One option is to use Kronecker
products ( en.wikipedia.org/wiki/Kronecker product ) to construct this
difference matrix. The corresponding function is called kron in Matlab.
It is highly recommended to use the function reshape for rearranging
m x n arrays into mn x 1 column vectors and vice versa.

You are strongly encouraged to write an efficient program, which can
handle fine resolutions in reasonable time. Take care to make the code
clean and readable. On an average workstation the solver should be
able to handle m = n = 800 or more without much trouble aside from
plotting such a large data set. To get this efficiency, move as much
work as possible out of the time loop and obviously use sparse format.
Use the Matlab profiler! Hint: Is the matrix in the linear system
constant in time? The time step? Consider LU-factorization using the
function lu ... with proper parameters in and out, use help lu.
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4 Numerical results (1.5)
In your report, please include the following computational results:

1. Solution plots: Show plots of the solution for some time levels before
and after t = 1/4, for both source functions S.

2. Convergence: Choose a point (x0, y0) and compile a table (or a plot)
which shows that the error behaves like

O(∆tp) +O(∆hr)

where h = ∆x = ∆y . Determine p and r. Try the smooth S(x, y)
first. What values would one anticipate from theory?
Next, try the time-variable point source S(x, y, t). What p and r do
you get? Why is it a bad idea to look at the error in ∞–or L2–norm
for this case? Furthermore, observe and report how your numerical
solutions change when you refine your approximation of the Diracδ:
ε = α

√
h and take α = 1, 0.1, 0.01,0.001, 0.0001, and 10−10. Can you

explain what you observe?

3. Numerical conservation: Demonstrate that the method is numeri-
cally conservative by looking atˆ

qdxdy = ∆x∆y
∑

Qij

for 0 < t < 2. Compare the computed result to the expression com-
puted in Section 1.1. Note: Conservation in “eye norm" is not enough!

Think about

(a) Time-discretization and how your code handles the discontinuity
in g(t)

(b) Space-discretization; where in the cell does (x, y) = (1/2, 1/2)
appear? Different for odd or even m,n.

5 Refinements (1.5 p)
Now we move on to slightly more advanced problems. The framework de-
veloped thus far in this lab should be very helpful when you tackle these
problems. Do not proceed with these tasks until the program above works
as expected!
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5.1 Variable coefficients

Consider
qt = a(y)qxx + b(x)qyy + S

instead of the PDE (1). Choose a(y) and b(x) as smooth and positive func-
tions.

1. Formulate the fully discrete problem for the variable coefficient case,
preferably in the Kronecker notation. Hint: Multiplication from the
left with a diagonal matrix scales each row of a matrix. How do you
scale the columns?

2. Implement a solver for the variable coefficient problem. With the Kro-
necker product construction, this should be fairly simple. Present con-
vergence and conservation results as in Section 3.

5.2 Boundary conditions

Change the boundary conditions (3) to

qx(0, y, t) = −1, qx(1, y, t) = −1

q(x, 0, t) =
1

π
sin(πx)q(x, 1, t) =

1

3π
sin(3πx) + 1

You may choose a different set of boundary conditions if you want to, as long
as you include at least one non-homogeneous Neuman and Dirichlet condi-
tion.

Implement this new boundary condition with the following approach: Con-
struct 1D difference matrices for each dimension and make sure they express
the right boundary conditions. Then assemble the 2D difference matrix from
the 1D matrices using Kronecker products.

Hint: In the matrix form of the fully discrete problem only one of the T
operators needs to change for the suggested new BC (4). There are different
options to enforce Dirichlet BCs in a finite volume method. For the condi-
tions (4), you may choose a grid as shown in given in Figure 1, only shifted
half a cell in the y-direction so the cell midpoints (and not cell boundaries)
are found at y = 0 and y = 1. Present convergence results as in section 3 and
discuss conservation in the context of non-homogenous boundary conditions.
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