KTH, Matematik, Serguei Shimorin

SF2705 Fourier Analysis Homework assignment for the Lecture 1

1. Prove that two following groups are isomorphic: the group \mathbb{R} of all real numbers with addition as a group operation and the group \mathbb{R}_+ of positive real numbers with multiplication as a group operation.

2. The group of characters of a group G is called the dual group to G. It is denoted by \hat{G} . The mapping $e_n \mapsto n$ gives an isomorphism between the dual group to S^1 , $(S^1)^{\wedge}$ and the group of integers \mathbb{Z} . Prove that the group \mathbb{Z}^{\wedge} dual to \mathbb{Z} is isomorphic to S^1 .

3. Assume that $(e_n)_{n\geq 1}$ is a unit-perpendicular family in an inner product space, i.e. $(e_n, e_m) = \delta_{mn}$. Prove that $||e_i - e_j|| = \sqrt{2}$ for any $i \neq j$.