EP2200 Home assignment I – Probability theory

1. Let A and B be two events such that:

$$P(A) = 0.4, P(B) = 0.7, P(A \cup B) = 0.9$$

- (a) Find $P(A \cap B)$.
- (b) Find $P(A^c \cap B)$.
- (c) Find P(A B).
- (d) Find $P(A^c B)$.
- (e) Find $P(A^c \cup B)$.
- (f) Find $P(A \cap (B \cup A^c))$.
- 2. Suppose that of all the customers at a coffee shop:
 - -70% purchase a cup of coffee.
 - -40% purchase a piece of cake.
 - -20% purchase both a cup of coffee and a piece of cake.

Given that a randomly chosen customer has purchased a piece of cake, what is the probability that he/she has also purchased a cup of coffee?

- 3. One way to design a spam filter is to look at the words in an email. In particular, some words are more frequent in spam emails. Suppose that we have the following information:
 - (a) 50% of emails are spam.
 - (b) 1% of spam emails contain the word "refinance".
 - (c) 0.001% of non-spam emails contain the word "refinance".

Suppose that an email is checked and found out to contain the word refinance. What is the probability that the email is a spam?

4. Let X and Y be two independent discrete random variables with the following PMFs:

$$P_X(k) = \begin{cases} \frac{1}{4} & \text{for } k = 1\\ \frac{1}{8} & \text{for } k = 2\\ \frac{1}{8} & \text{for } k = 3\\ \frac{1}{2} & \text{for } k = 4\\ 0 & \text{otherwise} \end{cases}$$

and

$$P_Y(k) = \begin{cases} \frac{1}{6} & \text{for } k = 1\\ \frac{1}{6} & \text{for } k = 2\\ \frac{1}{3} & \text{for } k = 3\\ \frac{1}{3} & \text{for } k = 4\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find $P(X \leq 2 \text{ and } Y \leq 2)$.
- (b) Find P(X > 2 or Y > 2).
- (c) Find P(X > 2|Y > 2).
- (d) Find P(X < Y).
- 5. Suppose that Y = -2X + 3. If we know E[Y] = 1 and $E[Y^2] = 9$, find E[X] and Var(X).
- 6. Let X be a continuous random variable with the following PDF

$$f_X(x) = \begin{cases} ce^{-4x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

where c is a positive constant.

- (a) Find c.
- (b) Find the CDF of X, $F_X(x)$.
- (c) Find P(2 < X < 5).
- (d) Find E[X].
- 7. Prove the following useful properties of random variables X and Y:

$$E[cX] = cE[X]$$

$$E[X+Y] = E[X] + E[Y]$$

$$Var[cX] = c^2 Var[X]$$

If X and Y are independent, then

$$Var[X + Y] = Var[X] + Var[Y]$$

Consider the mixture distribution given by pdf $p(x) = a_1 p_1(x) + a_2 p_2(x)$, $a_1 + a_2 = 1$. Show that

$$E[X] = a_1 E_{p_1}[X] + a_2 E_{p_2}[X]$$

$$E[X^2] = a_1 E_{p_1}[X^2] + a_2 E_{p_2}[X^2]$$