
DD2434 Machine Learning, Advanced Course

Assignment 2

Jens Lagergren, Hedvig Kjellström and Cheng Zhang

Deadline 12.00 (noon) (CET) December 16th, 2015

You will present the assignment will by a written report that you can mail to BOTH jensl@kth.se

(who corrects Tasks 2.1-2.4) and hedvig@kth.se (who corrects Tasks 2.5-2.7) before the dead-
line. From the report it should be clear what you have done and you need to support your claims
with results. You are supposed to write down the answers to the specific questions detailed for
each task. This report should clearly show how you have drawn the conclusions and come up
with the derivations. Your assumptions, if any, should be stated clearly. For the practical part
of the task you should not show any of your code but rather only show the results of your
experiments using images and graphs together with your analysis.

Being able to communicate your results and conclusions is a key aspect of any scientific prac-
titioner. It is up to you as a author to make sure that the report clearly shows what you have
done. Based on this, and only this, we will decide if you pass the task. No detective work should
be needed on our side. Therefore, neat and tidy reports please!

I very much recommend you to get used to LATEX to write your report. It is an amazing tool
that you will find very useful in your further endeavors as a scientist.

The grading of the assignment will be as follows,

E Completed Tasks 2.1, 2.2, and 2.5.

D E + Completed one of Tasks 2.3, 2.4, 2.6, and 2.7.

C E + Completed two of Tasks 2.3, 2.4, 2.6, and 2.7.

B E + Completed three of Tasks 2.3, 2.4, 2.6, and 2.7.

A Completed all tasks.

These grades are valid for review December 18th, 2015. See the course web page, HT 2015 -
Assignments in the menu, for grading of delayed assignments.
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Abstract

This assignment containts two parts. In the first part, you will get experience with different
types of graphical models and with inference over graphical models. In the second part, you will be
acquainted with two types of latent representation models where there are assumptions about the
data that makes it efficient to use non-Gaussian priors over the distributions in the latent space.
To summarize, all methods in this assignment make use of different kinds of knowledge about the
structure of the data.

I Graphical Models

2.1 Qualitiative effects in a Directed Graphical Model (DGM)

Consider the Directed Acyclical Graph (DAG) of a DGM shown in Figure 1. The variables are binary-
valued. The conditional probability densities are not known but, in contrast, available information
reveal how each variable qualitatively influences its children. The interpretation of the influences,
which are denoted +

→ and −
→ , are:

+

→ means p(y1|x1, c) > p(y1|x0, c), for all values c of Y ’s parents.

−
→ means p(y1|x1, c) < p(y1|x0, c), for all values c of Y ’s parents.

You should also assume the parents in any V-structure are conditionally dependent given the the
common child. Consider the following pairs of conditional probabilities:

1. p(t1|d1) and p(t1)

2. p(d1|t0) and p(d1)

3. p(h1|e1, f1) and p(h1|e1)

4. p(c1|f0) and p(c1)

5. p(c1|h0) and p(c1)

6. p(c1|h0, f0) and p(c1|h0)

7. p(d1|h1, e0) and p(d1|h1)

8. p(d1|e1, f0, w1) and p(d1|e1, f0)

9. p(t1|w1, f0) and p(t1|w1).
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Figure 1: The DAG with qualitative influence information.
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Question 1: In which pairs is one value larger than the other? Explain your choices.

Question 2: Which pairs are equal? Explain your choices.

Question 3: Which pairs are incomparable (i.e., the two values can not be compared based on
the information available in the DAG.) Explain your choices.

2.2 The casino model

Consider the following generative model. There are 2K tables in a casino, T1, ..., TK , T
′
1, ..., T

′
K of

which each is equipped with a single dice (which may be biased, i.e., any categorical distribution on
{1, ..., 6}) and N players P1, ..., PN of which each is equipped with a single dice (which may be biased,
i.e., any categorical distribution on {1, ..., 6}). Each player Pi visits K tables. In the k:th step, if the
the previous table visited was Tk−1, the player visits Tk with probability 1/4 and T ′k with probability
3/4, and if the previous table visited was T ′k−1, the player visits T ′k with probability 1/4 and Tk with
probability 3/4. So, in each step the probability of staying among the primed or unprimed tables is
1/4. At table k the player i throws the player’s own dice as well as the table’s dice. We then observe
the sum Si

k of the two dice, while the outcome of the table’s dice Xk and the player’s own dice Zk

are hidden variables. So for player i, we observe Si = Si
1, ..., S

i
K , and the overall observation for N

players is S1, ..., SN .

Question 4: Provide a drawing of the graphical model Θ.

Question 5: Provide an implementation (in Matlab or Python) of the model Θ.

Question 6: Provide data generated using at least three different sets of categorical dice distri-
butions – what does it look like for all perfect dice with uniform distributions, for example, or if
all of them are perfect instead of one, or if all are bad in the same way?

2.3 Sampling tables given dice sums

You will now design an algorithm that does inference on the casino model that you designed in Task
2.2.

Question 7: Describe an algorithm that, given (1) the parameters Θ of the full casino model of
Task 2.2 (so, Θ is all the categorical distributions corresponding to all the dice), (2) a sequence of
tables z1 . . . , zn, and (3) an observation of dice sums s1, . . . , sK , outputs p(z1, ..., zK |s1, . . . , sK ,Θ).

Notice, in the above DP algorithm you have to keep track of the last table visited.
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Question 8: You should also show how to sample z1, . . . , zK from p(Z1, ..., ZK |s1, . . . , sK ,Θ) as
well as implement and show test runs of this algorithm. In order to design this algorithm show
first how to sample zK from

p(ZK |s1, . . . , sK ,Θ) = p(ZK , s1, . . . , sK |Θ)/p(s1, . . . , sK |Θ)

and then zK−1 from

p(ZK−1|zK , s1, . . . , sK ,Θ) = p(ZK−1, zK , s1, . . . , sK |Θ)/p(zK , s1, . . . , sK |Θ).

2.4 Expectation-Maximization (EM)

Consider the following simplification of the casino model from Problem 2.2. There are K tables in
the casino T1, ..., TK of which each is equipped with a single dice (which may be biased, i.e., any
categorical distribution on {1, ..., 6}) and N players P1, ..., PN of which each is equipped with a single
dice (which may be biased, i.e., any categorical distribution on {1, ..., 6}). Each player Pi visits K
tables in the order 1, ...,K. At table k the player i throws their own dice as well as the tables dice.
We then observe the sum Si

k of the dice, while the outcome of the tables dice Xk and the player’s own
dice Zk are hidden variables. So for player i, we observe si = si1, ..., s

i
K , and the overall observation

for N players is s1, ..., sN .
Design and describe an EM algorithm for this model. That is, an EM algorithm that given

s1, ..., sN finds locally optimal parameters for the categorical distributions (i.e., the dice), that is, the
Θ maximising P (si1, ..., s

i
K |Θ).

Question 9: Present the algorithm written down in a formal manner (using both text and
mathematical notation, but not pseudo code).

Question 10: Provide an implementation (in Matlab or Python) of the algorithm, and insert
comments to explain the code.

Question 11: Test the implementation with data generated in Task 2.2, and provide graphs or
tables of the results of testing it with the data.
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II Non-Gaussian Latent Representations

2.5 Independent Component Analysis (ICA)

In this task we will pick up the thread from Task 1.4 in Assignment 1, but now in an unsupervised
learning setting. In Task 1.4, you essentially implemented Probabilistic Principal Component Analysis,
PPCA (Bishop, Section 12.2) using an iterative solution rather than the closed-form solution found
in Bishop, Section 12.2. Here you will implement a similar transform, but with a different prior
assumption.

Note that we, according to tradition, and to coincide with Hyvärinen and Oja, use a different
notation than Assignment 1: the data variable is here denoted x while the underlying latent variable
is denoted s (or z in Bishop). Discrepancies in representation is a necessary evil that you will come
across many times in your professional life.

Before proceeding, read Bishop, Section 12.4.2, as well as Hyvärinen and Oja, Sections 1-6, which
give an introduction to ICA and the types of data when it is applicable. (I can also recommend the
concise Wikipedia page on FastICA.) Essentially, PPCA and ICA differ in the type of assumption
they make about the prior distribution over the latent variable. In PPCA it is assumed that the latent
variable is normally distributed:

p(z) = N (z;mz,Σz) , (1)

where mz is the mean and Σz the covariance of the latent distribution. However, ICA instead makes
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Figure 2: The dataset found in DataICA.txt.
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the assumption that the dimensions in the latent space all are independent:

p(s) =
∏
j

p(sj) . (2)

The reason for the terminology s is that the original application of ICA was ”the cocktail party
problem”, i.e., factorization of a multidimensional sound signal x, each xk corresponding to the
recorded sound from one microphone k, into the individual signals s, each sj corresponding to the
speech signal from one speaker j.

You will now work with a signal that is constructed to have the same properties as the signals in
the cocktail party problem. Figure 2(a) shows two individual, independent signals over time. If the
order with respect to time is disregarded, the measurement of both signals at a certain time i can be
represented as a point si in a 2D space, see Figure 2(b).

Two microphones record two different linear combinations of the two signals. The linear combina-
tions over time are shown in Figure 2(c), and their 2D point representations xi in Figure 2(d). These
are found in DataICA.txt, which are linked from the course page, HT 2015 mladv15 > Assignments.
The task is now to recreate the separated signals using ICA. (You are NOT allowed to copy code from
readymade code packages.)

Question 12: First, whiten the data as described in Section 5 of Hyvärinen and Oja. Show
plots that illustrate both the two obtained eigenvectors and their eigenvalues, and a plot of the
whitened pointset {x̃i}, and describe (using both text and mathematical notation, but not pseudo
code) how you obtained it.

Question 13: Then, describe (using both text and mathematical notation, but not pseudo code)
why a PPCA transform can not recover the independent components in the data.

Question 14: Finally, recover the two independent components using FastICA as described in
Section 6 of Hyvärinen and Oja. Show plots that illustrate both the two obtained mixing vectors,
and a plot of the decorrelated pointset {si}, and describe (using both text and mathematical
notation, but not pseudo code) how you obtained it.

Two notes in connection the the last question: See Wikipedia for missing information about g′.
Moreover, you can only recover {si} up to a scale factor, so do not be worried if you obtain a scaled
copy of Figure 2(b).

2.6 Implementation of Latent Dirichlet Allocation (LDA)

Another type of latent representation model with non-Gaussian priors, developed for representation
of text documents, is Latent Dirichlet Allocation (LDA). Figure 3 shows a graphical representation of
this model. A document m, observed as a bag of words {wmi} (i.e., a multinomial distribution over
the language with V words in which the document is written) can be represented as a mixture θm of
k topics. Since k � V , θm is a very compact low-dimensional latent representation of the document
m. The prior assumption on the latent topic space θ is that it is Dirichlet distributed.

Before proceeding further, read Bishop page 363 for an explanation of the plate notation in Figure
3, Bishop Section 11.3 for an introduction to Gibbs sampling, as well as Blei and Lafferty, and Griffith
for an introduction to LDA. I can also recommend the Wikipedia pages on Gibbs sampling and LDA.

You will work with data in the form of text documents represented as bags of words {wi
m}. In the

7 files R3*.txt, which are linked from the course page, HT 2015 mladv15 > Assignments, a subset of
of the news article dataset Reuters 215781 is given. Each document is a news article. Our dataset is

1http://csmining.org/index.php/r52-and-r8-of-reuters-21578.html
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α θ z w β σ

m ∈ [1,M ]

i ∈ [1, N ] k ∈ [1,K]

Figure 3: Graphic representation of LDA. Words w are observed for each document. α and σ are the
hyperparameters, which are manually set with Gibbs sampling.

called R3 since it only contains 3 classes of news articles (crude, trade and money-fx). The original
news data of these three classes are given in R3-trn-all.txt, where each row contain the words
from a document. To ease the task, we have helped you preprocess the data so that each document
is represented by a document id, followed by word id and word count of all unique words in the
document. This preprocessed data is found in R3-trn-all run.txt, where each row is a document
in the format:

documentID wordID:counts wordID:counts ...

File R3 all Dictionary.txt is the dictionary over words where the first row has wordID 0, the second
wordID 1 and so on.

The task is now to implement the model shown in Figure 3, and train it with this document
collection using Gibbs sampling. (You are NOT allowed to copy code from readymade code packages.)

Question 15: Implement LDA with Gibbs sampling and run it with the given R3 data. Vary
the settings of the parameter K in the range [3, 10] (or higher if you wish and have the time).
(The hyperparameters α and σ can be set to 0.3). Make sure to save each model you run so that
you can use it for classification later! In the report, you should – for each model with different
K – show a list of the 30 most common words in each topic k, along with their weights in the
learned per topic word distribution βk. You should also, for one of the training documents m,
show the latent per document topic distribution θm for that document. Print out the words of
the document m in the report and explain, with examples from the document, the reasons for
this topic distribution θm.

In R3-tst-all.txt and R3-tst-all run.txt we provide test data for the R3 dataset. The label
ground truth of the testing data is found in R3-GT.txt. You will also need the labeling of the training
data; they can be found in R3-Label.txt.

Question 16: Now use a K > 3, for example K = 10 or K = 15. For each test document mtest,
infer the topic distribution θmtest. Classify each θmtest with kNN and the training document
representations θm. Study a couple of correctly classified documents, and a couple of wrongly
classified documents. Does it make sense, i.e., are the wrongly classified documents more atypical
of their class than the correctly classified?

2.7 Derivation of Gibbs sampling for Latent Dirichlet Allocation (LDA)

In this Gibbs sampling for LDA, we would like to sample on the topic assignment zmi. We would like
to compute the full conditional probability for zmi to drive the update question. We can get

p(zmi = k|w, z¬mi, α, σ) ∝
n
(wmi)
k,¬i + σ∑V

v=1 n
(v)
k,¬i + σ

·
n
(k)
m,¬i + α

(
∑K

j=1 n
(j)
m + α)− 1

, (3)

where ¬i means that the ith word in the mth document is not counted, n
(
mk) stands for the number

of words which are assigned to the topic k from the document m, and n
(v)
k stands for the number of
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words v assigned to topic (k).
Naturally, the end result of the latent parameters can be computed as:

θmk =
n
(k)
m + α

(
∑K

j=1 n
(j)
m + α)

βkv =
n
(v)
k + σ∑V

i=1 n
(i)
k + σ

Question 17: Please derive Equation (3) from the dependencies represented in Figure 3. We
require small steps where only one type of mathematic operation is allowed in each step. Com-
ments should be added between each step.

Good Luck!
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