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Recap from Lecture 6: Inference – in 
general, approximation is needed 

In Lecture 6, deterministic approximation methods 
 Analytic approximations to the exact posterior 
 p(latent | obs), i.e. fitting some known parametric 
 function or assume some independencies 
 + : Fast since analytic/closed-form solution 
 – : always an approximation to the true posterior 

 
Here, stochastic approximation methods 

 Monte Carlo sampling from the exact posterior 
 p(latent | obs) 
 + : Given ∞ samples, converges to exact solution 
 – : slow in many cases, sometimes hard to know if 
      sampling independent samples from true posterior 
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Today   

Monte Carlo (MC) sampling (Bishop 11.1) 
 Standard Monte Carlo sampling 
 Rejection sampling 
 Importance sampling 

 
Markov chain Monte Carlo (MCMC) sampling (Bishop 11.2) 

  
Gibbs sampling (Bishop 11.3) 
 
Some intuitions about Gibbs sampling in LDA (Griffiths) 
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Monte Carlo (MC) Sampling 
Bishop Section 11.1 
 



The Monte Carlo Principle 

Start off with discrete state space  
 
Imagine that we can sample         from the pdf            but that 
we do not know its functional form 

Might want to estimate for example: 
 
                                       
          can be approximated by a histogram over        : 
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Example: Dice Roll 

The probability of outcomes of dice rolls: 
 
Exact solution: 
 
 
 
 
Monte Carlo approximation: 
Roll a dice a number of times, might get   

p(z) =
1
6

What would 
happen if the 
dice was 
bad? 
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Example: Dice Roll 
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Monte Carlo Sampling –  
Inverse Probability Transform  

Cumulative distribution function     of distribution    (that we 
want to sample from) 
 
 A uniformly distributed random variable                         will 
render    

8 

F f

F�1(U) ⇠ F
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          does not have to be 
an analytic function, can also 
be a histogram like          ! q̂(z)

f(z)



Importance Sampling 

We very often (in Bayesian methods for example) want to 
approximate integrals of the form 
 
 
 

Monte Carlo sampling approach is to draw samples       from      
          and approximating the integral with a sum 
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E[f ] =
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x
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Z
f(x)p(x)dx =

1
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Importance Sampling 

Discuss with your neighbor (5 min): 
But what if           and           look like this, what happens with 
the estimation? 
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Importance Sampling 

In these cases, a good idea is to introduce proposal            
to sample from: 
 
 
 
where 
 
Reasons: 
            is smoother / less spiky than     

        is of a nicer analytical form than  
In general, good to keep                           approximately 
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Markov Chain Monte Carlo 
(MCMC) Sampling 
Bishop Section 11.2 
 



Intuition behind MCMC 

Standard MC and Importance sampling do not work well in 
high dimensions 
 

High dimensional space but actual model has lower (VC) 
dimension => exploit correlation! 
 

Instead of drawing independent samples       draw chains of 
correlated samples – perform random walk in the data where 
the number of visits to     is proportional to target density 
 

Random walk = Markov chain 
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What is a Markov Chain?

Definition: a stochastic process in which future states are
independent of past states given the present state

Stochastic process: a consecutive set of random (not
deterministic) quantities defined on some known state space ⇥.

I think of ⇥ as our parameter space.

I
consecutive implies a time component, indexed by t.

Consider a draw of ✓(t) to be a state at iteration t. The next draw
✓(t+1) is dependent only on the current draw ✓(t), and not on any
past draws.

This satisfies the Markov property:

p(✓(t+1)|✓(1),✓(2), . . . ,✓(t)) = p(✓(t+1)|✓(t))

Slide from Patrick Lam, Harvard 
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So our Markov chain is a bunch of draws of ✓ that are each slightly
dependent on the previous one. The chain wanders around the
parameter space, remembering only where it has been in the last
period.

What are the rules governing how the chain jumps from one state
to another at each period?

The jumping rules are governed by a transition kernel, which is a
mechanism that describes the probability of moving to some other
state based on the current state.

Slide from Patrick Lam, Harvard 16 

Transition Kernel
For discrete state space (k possible states): a k ⇥ k matrix of
transition probabilities.

Example: Suppose k = 3. The 3⇥ 3 transition matrix P would be

p(✓(t+1)

A |✓(t)

A ) p(✓(t+1)

B |✓(t)

A ) p(✓(t+1)

C |✓(t)

A )

p(✓(t+1)

A |✓(t)

B ) p(✓(t+1)

B |✓(t)

B ) p(✓(t+1)

C |✓(t)

B )

p(✓(t+1)

A |✓(t)

C ) p(✓(t+1)

B |✓(t)

C ) p(✓(t+1)

C |✓(t)

C )

where the subscripts index the 3 possible values that ✓ can take.

The rows sum to one and define a conditional PMF, conditional on
the current state. The columns are the marginal probabilities of
being in a certain state in the next period.

For continuous state space (infinite possible states), the transition

kernel is a bunch of conditional PDFs: f (✓(t+1)

j |✓(t)

i )

Slide from Patrick Lam, Harvard 
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Stationary (Limiting) Distribution

Define a stationary distribution ⇡ to be some distribution
Q

such
that ⇡ = ⇡P.

For all the MCMC algorithms we use in Bayesian statistics, the
Markov chain will typically converge to ⇡ regardless of our
starting points.

So if we can devise a Markov chain whose stationary distribution ⇡
is our desired posterior distribution p(✓|y), then we can run this
chain to get draws that are approximately from p(✓|y) once the
chain has converged.

Slide from Patrick Lam, Harvard 18 

Monte Carlo Integration on the Markov Chain

Once we have a Markov chain that has converged to the stationary
distribution, then the draws in our chain appear to be like draws
from p(✓|y), so it seems like we should be able to use Monte Carlo
Integration methods to find quantities of interest.

One problem: our draws are not independent, which we required
for Monte Carlo Integration to work (remember SLLN).

Luckily, we have the Ergodic Theorem.

Slide from Patrick Lam, Harvard 
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Ergodic Theorem

Let ✓(1),✓(2), . . . ,✓(M) be M values from a Markov chain that is
aperiodic, irreducible, and positive recurrent (then the chain is
ergodic), and E [g(✓)] <1.

Then with probability 1,

1

M

MX

i=1

g(✓
i

)!
Z

⇥

g(✓)⇡(✓)d✓

as M !1, where ⇡ is the stationary distribution.

This is the Markov chain analog to the SLLN, and it allows us to
ignore the dependence between draws of the Markov chain when
we calculate quantities of interest from the draws.

But what does it mean for a chain to be aperiodic, irreducible, and
positive recurrent, and therefore ergodic?

Slide from Patrick Lam, Harvard 20 

So Really, What is MCMC?

MCMC is a class of methods in which we can simulate draws that
are slightly dependent and are approximately from a (posterior)
distribution.

We then take those draws and calculate quantities of interest for
the (posterior) distribution.

In Bayesian statistics, there are generally two MCMC algorithms
that we use: the Gibbs Sampler and the Metropolis-Hastings
algorithm.

Slide from Patrick Lam, Harvard 



Gibbs Sampling 
Bishop Section 11.3 
 

Gibbs Sampling

Suppose we have a joint distribution p(✓
1

, . . . , ✓
k

) that we want to
sample from (for example, a posterior distribution).

We can use the Gibbs sampler to sample from the joint distribution
if we knew the full conditional distributions for each parameter.

For each parameter, the full conditional distribution is the
distribution of the parameter conditional on the known information
and all the other parameters: p(✓

j

|✓�j

, y)

How can we know the joint distribution simply by knowing the full
conditional distributions?

Slide from Patrick Lam, Harvard 

23 

Gibbs Sampler Steps

Let’s suppose that we are interested in sampling from the posterior
p(✓|y), where ✓ is a vector of three parameters, ✓

1

, ✓
2

, ✓
3

.

The steps to a Gibbs Sampler (and the analogous steps in the MCMC process) are

1. Pick a vector of starting values ✓(0). (Defining a starting distribution

Q
(0)

and

drawing ✓(0)

from it.)

2. Start with any ✓ (order does not matter, but I’ll start with ✓
1

for convenience). Draw a value ✓(1)

1

from the full conditional

p(✓
1

|✓(0)

2

, ✓(0)

3

, y).

Slide from Patrick Lam, Harvard 24 

3. Draw a value ✓(1)

2

(again order does not matter) from the full

conditional p(✓
2

|✓(1)

1

, ✓(0)

3

, y). Note that we must use the

updated value of ✓(1)

1

.

4. Draw a value ✓(1)

3

from the full conditional p(✓
3

|✓(1)

1

, ✓(1)

2

, y)
using both updated values. (Steps 2-4 are analogous to multiplying

Q
(0)

and P to get

Q
(1)

and then drawing ✓(1)

from

Q
(1)

.)

5. Draw ✓(2) using ✓(1) and continually using the most updated
values.

6. Repeat until we get M draws, with each draw being a vector
✓(t).

7. Optional burn-in and/or thinning.

Our result is a Markov chain with a bunch of draws of ✓ that are
approximately from our posterior. We can do Monte Carlo
Integration on those draws to get quantities of interest.

Slide from Patrick Lam, Harvard 



Some Intuitions about Gibbs 
Sampling in LDA 
Griffiths 

Short tutorial paper by Griffiths 

Note: Slight change of notation 

Nd 
D 

zi 

wi 

θ (d) 

φ (j) 

α 

β 
θ (d) ∼ Dirichlet(α) 

zi ∼ Categorical(θ (d) ) φ 
(j) ∼ Dirichlet(β) 

wi ∼ Categorical(φ 
(zi) ) 

T 

topic assignment  
for each word 

Dirichlet priors 

Slide from Griffiths 

Sample only assignments of words to topics 

No math here, for details to accomplish Task 2.6, see the 
paper by Griffith  
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Gibbs sampling in LDA 
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Gibbs sampling in LDA 
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Gibbs sampling in LDA 

i wi di zi zi
1
2
3
4
5
6
7
8
9
10
11
12
.
.
.
50

MATHEMATICS
KNOWLEDGE
RESEARCH
WORK

MATHEMATICS
RESEARCH
WORK

SCIENTIFIC
MATHEMATICS

WORK
SCIENTIFIC
KNOWLEDGE

.

.

.
JOY

1
1
1
1
1
1
1
1
1
1
2
2
.
.
.
5

2
2
1
2
1
2
2
1
2
1
1
1
.
.
.
2

?

iteration 
1             2 

( ) ( )
, ,

( )( )
, ,

( | , )
i i

i

w d
i j i j

i i dw
i j i k

w k

n n
P z j

n W n T
β α

β α
− −

−
− −

+ +
= ∝ ⋅

+ +∑ ∑
z w

Slide from Griffiths 

Gibbs sampling in LDA 

i wi di zi zi
1
2
3
4
5
6
7
8
9
10
11
12
.
.
.
50

MATHEMATICS
KNOWLEDGE
RESEARCH
WORK

MATHEMATICS
RESEARCH
WORK

SCIENTIFIC
MATHEMATICS

WORK
SCIENTIFIC
KNOWLEDGE

.

.

.
JOY

1
1
1
1
1
1
1
1
1
1
2
2
.
.
.
5

2
2
1
2
1
2
2
1
2
1
1
1
.
.
.
2

?

iteration 
1             2 

Slide from Griffiths 

( ) ( )
, ,

( )( )
, ,

( | , )
i i

i

w d
i j i j

i i dw
i j i k

w k

n n
P z j

n W n T
β α

β α
− −

−
− −

+ +
= ∝ ⋅

+ +∑ ∑
z w

Gibbs sampling in LDA 
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Gibbs sampling in LDA 
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What is next? 

Continue with Assignment 2, deadline December 16. 
 

Paper assignments for project groups are published tonight, 
deadline January 18. 
 

Next on the schedule  
 

Fri 4 Dec 15:15-17:00 E3         
Lecture 13: The Structure of a Scientific Paper 
Hedvig Kjellström 
Readings: Allen, Duvenaud et al. 
 
Bring Duvenaud et al. on paper (or pdf) for reference! 
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