
Introduction to Visualization and Computer Graphics 

DH2320, Fall 2015 

Prof. Dr. Tino Weinkauf 

Introduction to Visualization and 

Computer Graphics 

Visibility 

Shading 



Local Illumination 

Smooth Shading Simple Shadows Global Illumination 

3D Rendering 

Visibility Perspective 

Geometric Model Color 



Visibility Algorithms 



Two Rendering Pipelines 

Rasterization 

 Project all triangles to the screen 

 Rasterize them (convert to pixels) 

 Determine visibility 

 Apply shading (compute color) 

Raytracing 

 Iterate over all pixels 

 Determine visible triangle 

 Compute shading, color pixel 

  next lecture 

 



Triangle / Polygon Rasterization 

After Perspective Projection 

Observations 
 

Straight lines 

remain straight! 
 

Triangles mapped 

to triangles 
 

Polygons 

to polyogns 



Rasterization 

3D Scene 

Projection Visibility Rasterization 

Visiblity 

• preprocessing 

or 

• during rasterization 



Rasterization 

Two main algorithms 

 Painter’s algorithm (old) 

 Simple version 

 Correct version 

 z-Buffer algorithm 

 Dominant real-time method today 



Painter’s Algorithm 



Painter’s Algorithm 

Painters Algorithm 

 Sort primitives back-to-front 

 Draw with overwrite 

Drawbacks 

 Slowish 

 𝒪(𝑛 ⋅ log 𝑛) for 𝑛 primitives 

 “Millions per second” 

 Wrong 

 Not guaranteed to always work 



Counter Example 

Correct Algorithm 

 Need to cut primitives 

 Several strategies 

 Notable: BSP Algorithm in Quake 

 Old graphics textbooks list many variants 

 No need for us to go deeper 



z-Buffer Algorithm 



z-Buffer Algorithm 

Algorithm 

 Store depth value 
for each pixel 

 Initialize to MAX_FLOAT 

 Rasterize all primitives 

 Compute fragment depth & color 

 Do not overwrite if fragment is farer away 
than the one stored the one in the buffer 

color depth 



Discussion: z-Buffer 

Advantages 

 Extremely simple 

 Versatile – only primitive rasterization required 

 Very fast 

 GeForce 2 Ultra: 2GPixel /sec  
(release year: 2000) 

 GeForce 700 GTX Titan: 35 GPixel / sec 
(release year: 2013) 



Discussion: z-Buffer 

Disadvantages 

 Extra memory required 

 This was a serious in obstacle back then... 

 Invented 39 years ago (1974; Catmull / Straßer) 

 Only pixel resolution 

 Need painter’s algorithm for certain  
vector graphics computations 

 No transparency 

 This is a real problem for 3D games / interactive media 

 Often fall-back to sorting 

 Solution: A-Buffer, but no hardware support 

 



Rasterization and Clipping 



Rasterization 

How to rasterize Primitives? 

Two problems 

 Rasterization 

 Clipping 

color depth 



Rasterization 

Assumption 

 Triangles only 

 Triangle not outside screen 

 No clipping required 

 



Triangle Rasterization 

Several Algorithms... 



Triangle Rasterization 

Example: two slabs 



Triangle Rasterization 

Incremental rasterization 

Δ𝑥 constant 

precompute and 

add in each step 



Incremental Rasterization 

Precompute steps in x, y-direction 

 For boundary lines 

 For linear interpolation within triangle 

 Colors 

 Texture coordinates (more later) 

 Inner loop 

 Only one addition (“DDA” algorithm) 

 Floating point value 

 Strategies 

– Fixed-point arithmetics 

– Bresenham / midpoint algorithm 
(requires if; problematic on modern CPUs) 



Rasterization 

How to rasterize Primitives? 

Two problems 

 Rasterization 

 Clipping 

color depth 



Why Clipping? 

Crashes – write to off-screen memory! 



Clipping Strategies 

Pixel Rejection 

 “if (x,y ∉ screen) continue;” 

 Can be arbitrarily slow (large triangles) 

 Nope. Not a good idea. 

Screen space clipping 

 Modify rasterizer to jump to visible pixels 

 See tutorial 5 

 Efficient 

 Still problems with when crossing camera plane 
(𝑤 = 0) ⇒ a semi-good idea 



Smart Slab Renderer 

Does not crash, optimal complexity  

 𝑂(𝑘) for 𝑘 output fragments 



Problem 

Problem: 

 Triangles crossing camera plane! 

 Wrong results 

 Need object space clipping 

𝑓 
𝑧1 

𝑦′ = 𝑓
𝑦

𝑧
 

𝑧2 

𝑦1 

𝑦2 

camera 
plane 

image 
plane 



View Frustum Clipping 

near clipping 

plane 

far clipping 

plane 

four side   

planes 

six planes 

clip triangles 

against all  

six planes 



Incremental Algorithm 



Incremental Algorithm 



Incremental Algorithm 

Output: Multiple Triangles 



Further Optimization 

View Frustum Culling 

 Complex shapes (whole bunnies) 

 Coarse bounding volume (superset) 

 Cube, Sphere 

 Often: Axis-aligned bounding box 

 Reject all triangles inside if bounding volume outside view 
frustrum 



Smooth Shading Simple Shadows Global Illumination 

3D Rendering 

Visibility Perspective 

Geometric Model 

Local Illumination 

Color 



Shading Models 



mirror 

diffuse surface 

Reflectance Models 

glossy surface 



Interaction with Surfaces 

Local Shading Model 

 Single point light source 

 Shading model / material model 

 Input: light vector 𝐥 = 𝐩𝐨𝐬𝑙𝑖𝑔ℎ𝑡 − 𝐩𝐨𝐬𝑜𝑏𝑗𝑒𝑐𝑡  

 Input: view vector 𝐯 = 𝐩𝐨𝐬𝑐𝑎𝑚𝑒𝑟𝑎 − 𝐩𝐨𝐬𝑜𝑏𝑗𝑒𝑐𝑡  

 Input: surface normal 𝐧 (orthogonal to surface) 

 Output: color (RGB) 

Viewer 

Light 

object surface 

𝐯 𝐥 𝐧 



Interaction with Surfaces 

General scenario 

 Multiple light sources? 

 Light is linear 

 Multiple light sources: add up contributions 

 Double light strength ⇒ double light output 

Viewer 

Light 

object surface 

𝐯 𝐥 𝐧 



Remark 

Simplify notation 

 Define component-wise vector product 

𝐱 ∘ 𝐲 =

𝑥1

𝑥2

𝑥3

∘

𝑦1

𝑦2

𝑦3

≔

𝑥1 ⋅ 𝑦1

𝑥2 ⋅ 𝑦2

𝑥3 ⋅ 𝑦3

 

 No fixed convention in literature 

 The symbol “∘” only used in these lecture slides! 



Remark 

Lighting Calculations 

 Need to perform calculations for 𝑟, 𝑔, 𝑏-channels 

 Often: 
𝑜𝑢𝑡𝑝𝑢𝑡𝑟 = 𝑙𝑖𝑔ℎ𝑡𝑟 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑟 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐯, 𝐥, 𝐧  
𝑜𝑢𝑡𝑝𝑢𝑡𝑔 = 𝑙𝑖𝑔ℎ𝑡𝑔 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑔 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐯, 𝐥, 𝐧) 

𝑜𝑢𝑡𝑝𝑢𝑡𝑏 = 𝑙𝑖𝑔ℎ𝑡𝑏 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑏 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐯, 𝐥, 𝐧) 

 Shorter 
               𝐨𝐮𝐭𝐩𝐮𝐭 = 
𝐥𝐢𝐠𝐡𝐭_𝐬𝐭𝐫𝐞𝐧𝐠𝐭𝐡 ∘ 𝐦𝐚𝐭𝐞𝐫𝐢𝐚𝐥 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐯, 𝐥, 𝐧  



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Diffuse (“Lambertian”) Surfaces 

Equation 
𝑐 ~ cos 𝜃 

 Less light received at flat angles 
 

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 

𝜃 
𝐧 

𝜃 

𝐧 𝐧 
surface 
normal 

light color 
surface color 

𝑐 – intensity (scalar) 

𝐜 – color (RGB, ℝ3) 

𝐜𝑟 – surface color (RGB) 

𝐜𝑙 – light color (RGB) 

(set to zero if negative) 



Diffuse (“Lambertian”) Surfaces 

Equation 
𝑐 ~ cos 𝜃             

 Less light received at flat angles 
 

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 ⋅ 
light color 
surface color 

𝑐 – intensity (scalar) 

𝐜 – color (RGB, ℝ3) 

𝐜𝑟 – surface color (RGB) 

𝐜𝑙 – light color (RGB) 

Attenuation: 
1

𝑑𝑖𝑠𝑡2 

(point lights) 

1

𝑑𝑖𝑠𝑡2 

1

𝑑𝑖𝑠𝑡2 

𝜃 
𝐧 

𝜃 

𝐧 𝐧 
surface 
normal 



Diffuse Reflection 

Diffuse Reflection 

 Very rough surface microstructure 

 Incoming light is scattered in all directions uniformly 

 “Diffuse” surface (material) 

 “Lambertian” surface (material) 



Surface Normal? 

What is a surface normal? 

 Tangent space: 

 Plane approximation 
at a point 𝐱 ∈ 𝒮 

 Normal vector:  

 Perpendicular to that plane 

 Oriented surfaces: 

 Pointing outwards 
(by convention) 

 Orientation defined only for closed 
solids 

point 𝐱 

surface 
normal 
𝐧 𝐱 ∈ ℝ3

 

tangent 
space 

𝒮 



Triangles 

Single Triangle 

 Parametric equation 
 

𝐩1 + 𝜆 𝐩2 − 𝐩1 + 𝜇 𝐩3 − 𝐩1 |𝜆, 𝜇 ∈ ℝ  
 

 Tangent space: the plane itself 

 Normal vector 
𝐩2 − 𝐩1 × 𝐩3 − 𝐩1  

 Orientation convention: 
𝐩1, 𝐩2, 𝐩3 oriented counter-clockwise 

 Length: Any positive multiple works (often 𝐧 = 1) 

𝐩1 

𝐩3 

𝐩2 

𝐧 



Triangle Meshes 

Smooth Triangle Meshes 

 Store three different “vertex normals” 

 E.g., from original surface (if known) 

 Heuristic: 
Average neighboring triangle normals 



Lambertian Surfaces 

Equation 
 

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 
 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ 𝐧, 𝐥  

light direction 
normal vector 

𝐧 
𝐥 

(assuming: 𝐧 = 𝐥 = 1) 

𝜃 
𝐧 

𝜃 

𝐧 𝐧 
surface 
normal 

𝜃 



Lambertian Bunny 

Face Normals Interpolated 
Normals 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



“Ambient Reflection” 

Problem 

 Shadows are pure black 

 Realistically, they should be gray 

 Some light should bounce around... 

 Solution: Add constant 
𝐜 = 𝐜𝑎 ∘ 𝐜𝑎 

 

 

 Not very realistic 

 Need global light transport simulation 
for realistic results 

ambient light color 
surface color 



Ambient Bunny 

Pure Lambertian Mixed with Ambient 
Light 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Perfect Reflection 

Perfect Reflection 

 Rays are perfectly reflected 
on surface 

 Reflection about surface 
normal 

     𝐫 = 2 𝐧, 𝐥 𝐧 − 𝐥 

𝐧 

𝐥 𝐫 



Silver Bunny 

Perfect Reflection 

 Difficult to compute 

 Need to match camera and 
light emitter 

 More later: 

 Recursive raytracing 

 Right image: Environment 
mapping 
 

Reflective Bunny 
(Interpolated Normals) 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Glossy Reflection 

Glossy Reflection 

 Imperfect mirror 

 Semi-rough surface 

 Various models 



Phong Illumination Model 

Traditional Model: Phong Model 

 Physically incorrect 

(e.g.: energy conservation not guaranteed) 

 But “looks ok” 

 Always looks like plastic 

 On the other hand, our world is full of plastic... 



0

0,2

0,4

0,6

0,8

1

1,2

-90 -60 -30 0 30 60 90

p=1 p=2 p=5 p=10 p=50 p=100

How does it work? 

Phong Model: 

 “Specular” (glossy) part: 

𝐜 = 𝐜𝑝 ∘ 𝐜𝑙 ⋅
𝐫

𝐫
,

𝐯

𝐯

𝑝

 

 Ambient part: 
𝐜 = 𝐜𝑟 ∘ 𝐜𝑎 

 Diffuse part: 
𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ 𝐧, 𝐥  

 Add all terms together 

                       
cos ∠𝐫,𝐯

 

𝐥 

𝐯 
𝐫 

(high-) light 
color 

Phong Exponents 

𝐧 



Blinn-Phong 

Blinn-Phong Model: 

 “Specular” (glossy) part: 

𝐜 = 𝐜𝑝 ∘ 𝐜𝑙 ⋅
𝐡

𝐡
,

𝐧

𝐧

𝑝

 

 

 Half-angle direction 
 

𝐡 =
𝟏

𝟐

𝐥

𝐥
+

𝐯

𝐯
 

                       
cos ∠𝐡,𝐧

 
𝐥 

𝐯 𝐡 
𝐧 

 In the plane: ∠
𝐡

𝐡
,

𝐧

𝐧
=

1

2
∠

𝐫

𝐫
,

𝐯

𝐯
 

 Approximation in 3D 



Phong+Diffuse+Ambient Bunny 

Blinn-Phong Bunny Interpolated Normals 



Phong+Diffuse+Ambient Bunny 

Blinn-Phong Bunny Interpolated Normals 



Better Models 

Phong Bunny Cook-Torrance 
Model 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Transparency 

Transparency 

 “Alpha-blending” 

 𝛼 = “opacity” 

 Color + opacity: RGB𝛼  

Blending 

 Mix in 𝛼 of front color, 
keep 1 − 𝛼 of back color 
 

𝐜 = 𝛼 ⋅ 𝐜𝑓𝑟𝑜𝑛𝑡 + 1 − 𝛼 ⋅ 𝐜𝑏𝑎𝑐𝑘  
   

 Not commutative! (order matters) 

 unless monochrome 

50% red, 
50% green 

0.0
1.0
0.0
0.5

 

1.0
0.0
0.0
0.5

 

back 

front 



Refraction: Snell’s Law 

Refraction 

 Materials of different  
“index of refraction” 

 Light rays change direction 
at interfaces 

Snell’s Law 
sin 𝜃1

sin 𝜃2
=

𝑛2

𝑛1
 

 𝑛1, 𝑛2: indices of refraction 

 vacuum: 1.0, air: 1.000293 

 water: 1.33, glass: 1.45-1.6 

𝐧 

−𝐧 

𝜃1 

𝜃2 

𝑛2 
𝑛1 



Refraction 

Implementation 

 Not a local shading model 

 Global algorithms: mostly raytracing 

 Various “fake” approximations for local shading 

Refraction 

Reflection 

(raytraced) 



Simple Shadows Global Illumination 

3D Rendering 

Visibility Perspective 

Geometric Model 

Local Illumination 

Smooth Shading 

Color 



Shading Algorithms 



Flat Shading 

Flat Shading 

constant color per triangle 



Flat Shading 

“Gouraud Shading” Algorithm 

compute color at vertices, interpolate color for pixels 



Flat Shading 

“Phong Shading” Algorithm 

interpolate normals for each pixel 



Simple Shadows 

Geometric Model 

Perspective Visibility Local Illumination 

Smooth Shading 

3D Rendering 

Global Illumination 

Global Illumination: next lecture 

Color 


