
Introduction to Visualization and Computer Graphics

DH2320, Fall 2015

Prof. Dr. Tino Weinkauf

Introduction to Visualization and

Computer Graphics

Color

Projection

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Exam

● Thursday, 14 January 2016, at 08:00 - 10:00

● Location: V2, V3, V32

● 4 hand-written pages allowed

Now for

3D Rendering

3D Rendering

Assumption

 3D Model is given

 Triangle mesh
(for simplicity)

How do we get it to the screen?

Geometric Model

Perspective Visibility Local Illumination

Smooth Shading Simple Shadows Global Illumination

3D Rendering

Color

Perspective Visibility Local Illumination

Smooth Shading Simple Shadows Global Illumination

Geometric Model

3D Rendering

Color

Physics, Biology

Ray Optics & Color

Ray Optics

Geometric ray model

 Light travels along rays

Ray Optics

Geometric ray model

 Rays have “intensity” and “color”

What is COLOR?

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

● Next slides mostly from Kristi Potter (U Utah)

Ray Optics

Color spectrum

 Continuous spectrum

 Intensity for each wavelength

wavelength 𝜆

390nm 700nm

reddish bluish

gray with a
tint of green

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

What is COLOR?

● Color is:

● A spectral distribution of light

● Perceptual response to spectral distribution of light

● A way of encoding a spectral distribution of light

● It would be too simplistic to describe color just as

● A particular wavelength of light

● RGB

Computer Graphics Visualization
Vision Science

Neuro Science

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Color Blindness

The numeral "74" should be clearly visible to viewers with normal color vision.

Viewers with dichromacy or anomalous trichromacy may read it as "21“.

Viewers with achromatopsia may not see numbers.

From http://en.wikipedia.org/wiki/Color_blindness

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

● The terms "simultaneous contrast" and "successive

contrast" refer to visual effects in which the appearance of a

patch of light (the "test field") is affected by other light

patches ("inducing fields") that are nearby in space and

time, respectively.

● The names are somewhat misleading since both

simultaneous and successive contrast involve inducing

fields that are close in both time and space.

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Successive Contrast

Other perceptual aspects

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

„This is Van Gogh’s last painting before he committed suicide.“

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Color Mixing, Color Models, Color Interpolation

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Additive color mixing

● Additive color mixing:

● Light rays with different spectra of light come together

● The spectra add up

● The result is a different spectrum of light, i.e., color.

● Example RGB:

● Monitors

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Subtractive color mixing

● Subtractive color mixing:

● A light ray with a (white) spectrum of light hits a surface

● It is being reflected

● The surface absorbs some wavelengths of light

● The result is a different spectrum of light, i.e., color.

● Example CMY(K):

● Cyan: complement of red (= absorbs red)

● Magenta: complement of green

● Yellow: complement of blue

● K = black ink to hide

color mixing imperfections

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Color Models

● Color Models are a way to encode a spectrum of light

● HSL

● HSV

● RGB

● CMYK

● many more…

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

HLS System

● Hue
classifies a color as red,

green, blue, or mixture

of these. The hues are

given on a circle.

● Lightness
depends on the amount

of light

● Saturation
describes the gray

portion of the color

● Perception-oriented

color system

L=1

H=0°

H=300°

H=180°

S=1
S S=0

L=0.5

L=0

 L

 H

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

HSV System

● Hue
classifies a color as red,

green, blue, or mixture

of these. The hues are

given on a circle.

● Saturation
describes the gray

portion of the color

● Value
depends on the amount

of light

● Perception-oriented

color system

Black

B

R

G

Y

(Value "V")

HSV-

System

S

cuts through the HSV cone at v=1 and v=0.5

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

RGB System

● Red

● Green

● Blue

● Technology-

oriented color

system

● Describes a color

by mixing three

primary colors

RGB color cube

Green

G

White

Blue
Black

Red

R

B

RGB Model

Bitmap (Pixel Display)

 Screen: 𝑤 ⋅ ℎ discrete pixels

 Origin: usually upper left

 Varying color per pixel

RGB Model

 Every pixel can emit red, green, blue light

 Intensity range:

 Usually: bytes 0...255

 000 = dark

 255 = maximum brightness

𝑤

ℎ

x-coord.

y-
co

or
d.

0 w – 1

h – 1

Human Vision

Create color impressions

 Basis for three-dimensional color space

 Wide spacing, narrow bands: purer colors

 Otherwise: washed out colors

wavelength 𝜆

390nm 700nm

(curves: schematic, not accurate)

Response curves:
human eye (ideal) monitor:

emitted spectra

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Conversion from HSV to RGB

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Color Interpolation

● When using a specific color model, we can interpolate

between two colors by treating them like vectors and using

linear interpolation.

Example:

𝑅
𝐺
𝐵

= 1 − 𝑡
𝑅1

𝐺1

𝐵1

+ 𝑡
𝑅2

𝐺2

𝐵2

● It is often perceptually better, to interpolate in the HSV or

other perception-based models!

Example of changing the saturation:

𝐻
𝑆
𝑉

=
𝐻

1 − 𝑡 𝑆1 + 𝑡𝑆2

𝑉

Transparency

Transparency

 “Alpha-blending”

 𝛼 = “opacity”

 Color + opacity: RGB𝛼

Blending

 Mix in 𝛼 of front color,
keep 1 − 𝛼 of back color

𝐜 = 𝛼 ⋅ 𝐜𝑓𝑟𝑜𝑛𝑡 + 1 − 𝛼 ⋅ 𝐜𝑏𝑎𝑐𝑘

 Not commutative! (order matters)

 unless monochrome

50% red,
50% green

0.0
1.0
0.0
0.5

1.0
0.0
0.0
0.5

back

front

Visibility Local Illumination

Smooth Shading Simple Shadows Global Illumination

Geometric Model

3D Rendering

Perspective

Color

More about homogenous coordinates

Projective Geometry

Constructing Projective Spaces

q

s

1 − 𝑡 𝐪 + 𝑡𝐬

for 𝑡 ∈ [0,1]
1 − 𝑡 𝐪 + 𝑡𝐬

for 𝑡 > 1

Constructing Projective Spaces

0

s

1 − 𝑡 𝟎 + 𝑡𝐬

for 𝑡 ∈ [0,1]

origin

1 − 𝑡 𝟎 + 𝑡𝐬

for 𝑡 > 1

Since the first point is the origin,

we just have for all points along the ray:

𝐬′ = 𝑡𝐬 =
𝑡𝑠𝑥

𝑡𝑠𝑦

Constructing Projective Spaces

Projective Space P𝑑:

• Euclidean (“affine”) space ℝ𝑑 embedded in ℝ𝑑+1

• At 𝑤 = 1

• Identify all points on lines through the origin

 Representing the same Euclidean point

ℝ1 P1

0

p ℝ1

p’ P1

ℝ2 P2

0

p’ P2

 p ℝ2

𝐩′ =
𝑤p
𝑤

𝑤 ∈ ℝ≠0 𝐩′ =
𝑤𝐩
𝑤

𝑤 ∈ ℝ≠0

𝑤 = 0 𝑤 = 1 𝑤 > 1

Constructing Projective Spaces

Translations:

• Sheering of the projective space
1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

= Translation of the embedded affine space

ℝ1 P1

0

p ℝ1

p’ P1

𝑡𝑥

Normalization

Conversion between

• Cartesian coordinates (Euclidian space)

• Homogeneous coordinates (projective space)

Cartesian coordinates

(Euclidian space)

homogenous coordinates

(projective space)

𝐱 →
𝑤𝐱
𝑤

1

w
𝐱 ←

𝐱
𝑤

normalization*)

*) overloaded name
 do not confuse with 𝐱/ 𝐱

Vectors & Points

Interpretation

• Points:

𝑥
𝑦
𝑧
𝑤

, 𝑤 ≠ 0

• Vectors:

𝑥
𝑦
𝑧
0

 – “pure directions”

Vectors & Points

Rules

• Substracting points

yields vectors

 Normalize first!

• Vectors can be

added to

 Other vectors

 Points

(normalize first!)

𝐯

𝐯𝟐

𝐯

𝐯2
𝐨𝐫𝐢𝐠𝐢𝐧

𝐯 − 𝐯2

Physics

Perspective Projection

Pinhole Camera

Pinhole camera

 Create image by selecting rays of specific angles

 Low efficiency (small holes for sharp images)

Pinhole Camera

Pinhole camera

 Create image by selecting rays of specific angles

 Low efficiency (small holes for sharp images)

Pinhole Camera

Central Projection

Pinhole Camera

Central projection

𝑥′ = 𝑓
𝑥

𝑧

𝑦′ = 𝑓
𝑦

𝑧

𝑦′

𝑦

𝑓
𝑧

Proof:

Intercept theorem!

(Actual Camera)

Camera with Lens

 Higher efficiency (bundles many rays)

 Finite Depth of field

 We will consider pinhole cameras only.

Pinhole Camera

𝑦′

𝑦

𝑓
𝑧

Undetermined degree of freedom

 Focal length vs. image size

 Source of a lot of confusion!

𝑥′ = 𝑓
𝑥

𝑧

𝑦′ = 𝑓
𝑦

𝑧

Pinhole Camera

Parameters

 h - size of the screen (pixels, cm, ±1.0,...)

 f – focal length (classical photography)

 Meaningful parameter: α – viewing angle

h
𝑓

𝛼

Pinhole Camera

Relation:

tan
𝛼

2
=

ℎ

2𝑓

h
𝑓

𝛼

Pinhole Camera

Invariance

 Scaling h and f by a common factor: no change

h

𝑓′

𝛼

tan
𝛼

2
=

ℎ

2𝑓
=

ℎ′

2𝑓′
=

ℎ′′

2𝑓′′

ℎ′ ℎ′′

𝑓 𝑓′′

Pinhole Camera

Typical choices (vertical angles)

 “Normal” perspective: 𝛼 ≈ 30° (“50mm” lens: 27°)

 Tele photography: 𝛼 ≈ 5° − 20° (275–70mm)

 Wide angle lens: 𝛼 ≈ 45° − 90° (28–12mm)

h
𝑓

𝛼

View Volume

near clipping

plane

far clipping

plane

four side

planes

Pinhole Camera

Our camera:

 Focus point: origin

 View direction: z-axis

𝑦′

𝑦

𝑓
𝑧

𝑥′ = 𝑓
𝑥

𝑧

𝑦′ = 𝑓
𝑦

𝑧

Homogeneous Coordinates

Write in homogeneous coordinates

 Third row is arbitrary (for now), not used.

𝑥′ = 𝑓𝑥

𝑦′ = 𝑓𝑦

 𝑧′ = 𝑧 − 1

𝑤′ = 𝑧

𝑥′
𝑦′

𝑧′
𝑤′

=

𝑓 0 0 0
0 𝑓 0 0
0 0 1 −1
0 0 1 0

𝑥
𝑦
𝑧
1

Projection Matrix P

𝑥′ = 𝑓
𝑥

𝑧

 𝑦′ = 𝑓
𝑦

𝑧

 𝑧′ =
𝑧 − 1

𝑧

 𝑤′ = 1

before normalization after normalization

View transform

Reminder:

h 𝛼

tan
𝛼

2
=

ℎ

2𝑓

ℎ′′

𝑓

To Screen Coordinates

Scale to unit screen coordinates

 We set 𝑓 to 1 in previous matrix

 Third row is arbitrary (for now),
not used.

1

tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 0
0 0 0 1

+ 1

– 1

+ 1
– 1

0

+ 1 – 1

+ 1

– 1

0

normalized screen
coordinates

Aspect Ratio

Non-square screens?

 Screen: w × ℎ pixels

 Aspect ratio
𝑤

ℎ

 Different horizontal angle!

1
𝑤
ℎ

⋅ tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 0
0 0 0 1

+ 1 – 1

+ 1

– 1

0

normalized screen
coordinates

non-square
screen

h – 1

w – 1

To Screen Coordinates

Scale to pixels

 Third row is arbitrary (for
now), not used.

𝑤/2 0 0 𝑤/2
0 −ℎ/2 0 ℎ/2
0 0 1 0
0 0 0 1

x-coord.

y-
co

or
d.

0 w – 1

h – 1

0

+ 1

– 1

+ 1
– 1

0
+ 1 – 1

+ 1

– 1

0

0

h – 1

w – 1

To Screen Coordinates

Overall

 Multiply both

ℎ/2

tan
𝛼
2

0 0
𝑤/2

tan
𝛼
2

0 −
ℎ/2

tan
𝛼
2

0
ℎ/2

tan
𝛼
2

0 0 1 0
0 0 1 0

Additionally:
Also scale + shift such that

𝑧′ =
𝑧 − 1

𝑧

are in value [0..1] for inputs
𝑧 ∈ [𝑧𝑛𝑒𝑎𝑟 , 𝑧𝑓𝑎𝑟]

a b

𝑎 =
𝑧𝑓𝑎𝑟 + 𝑧𝑛𝑒𝑎𝑟

𝑧𝑛𝑒𝑎𝑟 − 𝑧𝑓𝑎𝑟

𝑏 =
2 ⋅ 𝑧𝑛𝑒𝑎𝑟 ⋅ 𝑧𝑓𝑎𝑟

𝑧𝑛𝑒𝑎𝑟 − 𝑧𝑓𝑎𝑟

Summary

Projection matrix

𝐏 =

𝑓 0 0 0
0 𝑓 0 0
0 0 1 −1
0 0 1 0

Projection & conversion to screen coords

𝐏𝑠 =

𝑤/2 0 0 𝑤/2

0 −ℎ/2 0 ℎ/2

0 0 1 0

0 0 0 1

 ̇

1
𝑤
ℎ

tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 0

0 0 0 1

 ̇

1 0 0 0

0 1 0 0

0 0 1 −1

0 0 1 0

projection
matrix

normalized
 screen coord’s

scaling to pixels,
upper left origin

(𝑓 = 1)

General Camera

Our camera so far:

 Focus point: origin

 View direction: z-axis

 General position/orientation?

𝑦′

𝑦

𝑓
𝑧

𝑥′ = 𝑓
𝑥

𝑧

𝑦′ = 𝑓
𝑦

𝑧

General Camera

general camera

𝐲
𝐱

𝐳

camera in origin, view in z-direction

object of interest

General Camera

general camera

𝐲
𝐱

𝐳

camera in origin, view in z-direction

object of interest

𝐯

𝐮

𝐰

𝐜

General Camera

general camera

𝐲
𝐱

𝐳

camera in origin,
view: z-direction

𝐯

𝐮

𝐰

𝐜

Camera coordinate system 𝐮, 𝐯, 𝐰

Origin: 𝐜

Standard coordinates 𝐱, 𝐲, 𝐳 =
1
0
0

,
0
1
0

,
0
0
1

Derivation

𝐲
𝐱

𝐳

𝐲
𝐱

𝐳

𝐯

𝐮

𝐰

𝐜

Derivation

𝐲
𝐱

𝐳

𝐯′

𝐮′ 𝐰′

−𝐜

Same effect:

Transform the world with

inverse camera transform

| | |

𝐮′ 𝐯′ 𝐰′
| | |

=
| | |
𝐮 𝐯 𝐰
| | |

−1

Derivation

𝐲
𝐱

𝐳

𝐯′

𝐮′ 𝐰′

−𝐜

Transform:

𝐩 →
| | |
𝐮 𝐯 𝐰
| | |

−1

𝐩 − 𝐜

| | |

𝐮′ 𝐯′ 𝐰′
| | |

=
| | |
𝐮 𝐯 𝐰
| | |

−1

Derivation

𝐲
𝐱

𝐳

−𝐜

Transform:

𝐩 →
 − 𝐮 −
− 𝐯 −
− 𝐰 −

𝐩 − 𝐜

𝐮, 𝐯, 𝐰 orthogonal!

𝐯′

𝐮′ 𝐰′ | | |

𝐮′ 𝐯′ 𝐰′
| | |

=
| | |
𝐮 𝐯 𝐰
| | |

−1

General Camera

general camera

𝐲
𝐱

𝐳

camera in origin,
view: z-direction

𝐮

𝐫

𝐯

𝐜

Camera coordinate system 𝐮, 𝐫, 𝐯

Origin: 𝐜

Standard coordinates 𝐱, 𝐲, 𝐳 =
1
0
0

,
0
1
0

,
0
0
1

Transform:

𝐩 →
 − 𝐮 −
− 𝐯 −
− 𝐰 −

(𝐩 − 𝐜)

General Camera

general camera

𝐲
𝐱

𝐳

𝐮

𝐫

𝐯

𝐜

Camera coordinate system 𝐮, 𝐫, 𝐯

Origin: 𝐜

Homogeneous:

𝐩 →

 − 𝐮 − |

− 𝐯 − −𝐜′

− 𝐰 − |
0 0 0 1

𝐩

𝐜′ =
 − 𝐮 −
− 𝐯 −
− 𝐰 −

𝐜

Summary

Projection (screen coord’s)

𝐏𝑠 =

ℎ/2 0 0 𝑤/2
0 −ℎ/2 0 ℎ/2
0 0 1 0
0 0 0 1

 ̇

1

tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 0
0 0 0 1

 ̇

1 0 0 0
0 1 0 0
0 0 1 −1
0 0 1 0

Add View Matrix

𝐏𝑠 ⋅

 − 𝐮 − |

− 𝐯 − −𝐜′

− 𝐰 − |
0 0 0 1

Benefit:

Still only one overall

4×4 matrix

to multiply with!

(𝑓 = 1)

