Speech and Speaker Recognition - DT2118
Project : Language Models for the WaveSurfer ASR Plugin

Staffan Aldenfalk & Charly Fontaine

[bookmark: h.cbdy5joqpdb9]1.Abstract

The purpose of this project is to design and test example of language models for the WaveSurfer ASR plugin. The building and training of the language model has been done in English, based on n-gram models. The Mail Enron corpus was chosen in order to build the n-gram and a program in Java was developed in order to build it. The language model was written using the ARPA format which was hard to use because of its incomplete documentation. The order of the n-gram chosen was 3, but because of the troubles with the ARPA format this had to be cut down to order 2. When the same sentences with close connection to the corpus was spoken, 32% of the words were recognized and in the correct order. When sentences that had less to do with the corpus were uttered the accuracy went down as expected, the three sentences with the least correlation with the corpus had an average of 12% of accuracy. If the 3-grams had been incorporated a better result would be expected since a word often has a strong correlation to its 2 previous words.
[bookmark: h.i7ff1549tul]2. Introduction

A language model can consist of three major areas: grammar, statistical model to determine the next word and smoothing. This report will focus on the statistical model. The statistical model works by assigning a probability of seeing the word ‘word’ given the previous words that has uttered. This is useful because sometimes you have two utterances that sound similar but mean different things. One example of this is the phrases “recognize speech” and “wreck a nice beach”, they sound similar but mean two different things. By having the probability of them appearing you can choose the most likely and have a higher chance of it being the correct phrase.
A common way of creating a statistical model is by using the n-gram model. It calculates the chances of a word appearing given what words has previously uttered. The letter ‘n’ in the n-gram stands for which order it has. A 1-gram will only look at how often a word has uttered meaning it calculates . A 2-gram model will instead calculate how big the chance are of a word appearing given the word before which is . And a 3-gram will calculate given the two words that are before and so on.
The program Wavesurfer with an ASR plugin will be used in order to test the language model. Wavesurfer is an open source tool for sound visualization and manipulation developed by the members of the School of Computer Science and Communication (CSC), Speech, Music and Hearing, TMH, Speech Communication and Technology at KTH, Stockholm Sweden. The plugin ASR is built upon the Julius[footnoteRef:0], high performance open source software designed for large vocabulary continuous speech recognition, can compute 3 grams models with up to 60K words in real time. [0: http://julius.osdn.jp/en_index.php]

One of the standard formats that Julius accepts for the language model is the “ARPA backoff N-gram model[footnoteRef:1] ” this format already uses the backoff smoothing. What this does is that if it can’t find a match in the 3-gram model it will look for a match in the 2-gram model and so on. This is to ensure that there always is a match. [1: http://www.speech.sri.com/projects/srilm/manpages/ngram-format.5.html]

To compute the recognition the dictionary contains phonemes, i.e. how to pronounce each word. Even though the content of the english language is the same for all ethnicities, the way to pronouce it may vary and therefore some phoneme may be different depending on the origin of the speaker, this can be taken into account for advanced recognition, in order to minimize the error rate.
[bookmark: h.2orrfkq7m97h]2.1 Related work

This study was led by the computer engineering department of Sharif University of Technology in Tehran, Iran [1] the purpose of it, is to propose a new way to build n-gram models for a continuous speech recognition for the Persian language. The idea is to assign to each word a vector that contains the statistics of parts of speech (POS) tagging and then cluster the features vectors with a K-means[footnoteRef:2] algorithm. As a result they decreased considerably the word error rate of the CSR (Continuous Speech Recognition). [2: http://en.wikipedia.org/wiki/K-means_clustering]

The POS tagging gives a context to a word which gives it a meaning and this will affect its probability to be found or not. For instance, with the POS tagging, in the sentence, “the sailor dogs the hatch”, the word “dogs” will not be interpreted as the plural of a noun but as a verb that means something completely different.
They also used a word clustering method to have a solid extraction of the n-gram models due to the fact that their database was at an early stage and it’s exploitation was too sparse. This leads to the building of a class based n-gram models because when the word prediction based n-gram models is not enough they use the cluster of words to make the result more relevant instead of using the probability of the word itself.	
Their method is the following:
Based on the “Persian Text Corpus”[footnoteRef:3], they extracted the varieties of words and the frequency of occurrence of them. Then they defined the 20 000 most frequent words as the vocabulary for the system. Finally, they build a “POS matrix”, which concatenates the features vectors of each word of the vocabulary. Hence, two words that have the same POS tags have their feature vectors that look alike and they must belong to the same class. To use this matrix, they use the K-means algorithm to compute the distances between each vectors to finally extract the most relevant word to be predicted. [3: https://wiki.iranianlinguistics.org/wiki/Persian#Corpora]

The data used contained various Persian texts and around 9 million words with POS tags. The sources of those texts are various, magazines, books, letters etc. and the topics that the texts are dealing with is broad, politic, art, sports etc. At this point the authors chose to gather the POS tags file in clusters because of the scarcity of the file, in the end, they had 164 classes. Thus, the unused tags which were not in any class would be reassigned as “IGNORE” and the end of the sentence was reference with a “NULL” tag.

The second study explains how is the CMU Statistical Language Modeling Toolkit [2] built.
This paper has been written at the School of Computer Science Carnegie Mellon University Pittsburgh in Pennsylvania [2].
For instance, this toolkit can be used for the following which is taken from the article :
					
· word frequency lists and vocabularies
· word bigram and trigram counts
· vocabulary-specific word bigram and trigram counts
· bigram- and trigram-related statistics
· various Backoff [Katz 87] bigram and trigram language models
					
After choosing a database of words, from the Wall Street Journal in their case, Mail Enron corpus in ours, some preprocessing may have to be done depending on the type of input data, i.e. transform a Verbalized Punctuation[footnoteRef:4] format to a Some Verbalized Punctuation1[footnoteRef:5]. [4: Is used in a transcript when for instance “What?” is transformed in “What Question Mark?”] [5: Transforms the Verbalized Punctuation and remove the sign e.g “What Question Mark?” -> “What Question ”]

In this article they highlight the good practice of keeping the 20 000 first frequent words to build the dictionary, although we have kept 50 000 words for the vocabulary, they aren’t the most frequents one yet this might give a clue to improve our solution. In this paper, both a trigram and a bigram backoff model were created, based on the vocabulary. Thanks to the exclusion of elements from singleton bigram to tripleton[footnoteRef:6] trigrams in the trigram model, the Language Model was extremely compressed. The same process was used for the bigram model, but only excluded the singleton bigrams, resulted in an even more compressed file. [6: Words occurring three times]

This paper was done in 1995 and the reason why such focus was put on data storage was because it was not easy to store large amount of data during that time since the harddisks was not so big. In our case even though the database is large we might be able to keep the whole set of data.	

[bookmark: h.cmabjcwr2gyt]3. Method

The language model was produced by modifying a program that was created in another course, the program would read in a large text and hash it. It is then possible to search for a word and find all of its occurrences. The program was modified so that it would read in the Mail-Enron corpus and when searching for a word a n-gram model would also be built around that word. The n-gram would be build as follows:
First a 1-gram would be built by counting all the occurrences of the word that was searched upon and divide it by the total number of words, this means that is calculated.

A 2-gram model is then calculated by counting the occurrences of the word after the one that was searched upon which means that can be calculated where is the one that was searched upon.
Finally a 3-gram model is build around the searched word. This is done by combining the searched word with its previous word and counting the occurrences of the word that comes after the combination. This gives where is the word that was searched for and is the word prior to it. This is then looped through so that all combinations found in the Mail-Enron corpus have a n-gram built upon it. The dictionary used in the english language pack of wavesurfer was used in order to get search words to use.

Once the language model has been properly created and written with the ARPA format an evaluation is done. The evaluation is done by comparing the accuracy of the recognition given the relevance of the sentence toward the corpus. The comparison will be done between the accuracies that are calculated according to formula 1.0, where N is the number of words, D is the number of deletions, I is the number of insertions and S the number of subtractions.
				1.0

[bookmark: h.vv8cdlejdx73]4. Data
To undertake the processing of our program we have chosen to use the thread of mails from a company that was released a few years ago. Called Mail Enron Corpus[footnoteRef:7] , it is a corpus of text that works well for machine learning or speech analysis thanks to its natural messages. This database of words is 88.2 MB of plain text. In terms of content, there are 619 446 messages from 158 users, which can be reduced to 200 399 if you don’t count the threads of discussion amongst the users, this represent on average 757 messages per user. This is a dataset of 13,8 million words among which we can identify some elements that shouldn’t be taken into account in the recognizing process. For instance, “=20” exists in the list but it has to be removed. Some words also had a “illegal” sign attached to it, for example “this?” in which case the “?” was removed yielding “this” instead. [7: https://www.cs.cmu.edu/~./enron/, corpus of the Enron mail database.]

The pros of this database is that the users are using proper english and thus the correlation with the dictionary will be better, i.e. words will be found easier that if they contains typos. On the other hand, the topics are mainly about the working field so the scope of the vocabulary will not be as broad as it could be.

[bookmark: h.4rbfy0rz0eoc]6. Experimental

[bookmark: h.x5adiyy9gahp]6.1 Experimental setup
For the experiment we first recorded 14 sentences from 8 people. We had 4 females and 4 males. They repeated each sentence twice while recorded. The five first sentences have a similarity to the Enron corpus the next five sentences are aimed at being neutral and the three last sentences should be hard to interpret for both language models. The environment of recording was in a calm room that where a few student were studying around 10m away. The program used to record was Audacity[footnoteRef:8] and the sampling frequency was set to 16kHz but the microphone might not have been able to handle that sampling frequency. Once the utterances had been recorded we cleaned it from unwanted noises an example of unwanted noise is the noise of a chair sliding on the floor or the laugh of someone were simply erased by selecting the unwanted part and deleted it. Plus, during the recording, some utterances were not performed correctly so additional recordings were done and then merged to get a clean file. Finally, since wavesurfer didn’t accept files that last more than 1 minute, each one of them has been split into two parts, so that they could be used by wavesurfer. [8: http://en.wikipedia.org/wiki/Audacity_(audio_editor)]

The sentences are the following:

· Please call tomorrow if possible.
· Hope your trip to Florida was good.
· I would like to attend if so.
· I will bring John Brindle.
· I am almost speechless.
·
· Chocolate is the best stuff in the world.
· Would you like more wine, sir ?
· I am studying for my exam.
· Could you send me the mustard.
· What time is it?

· Wherefore art thou romeo ?
· All the faith he had had had had no effect.
· Colorless green ideas sleep furiously.

The hardware used to conduct the experiment was the headset Logitech HD540 with its microphone that had the following properties:
· Frequency response (Microphone): 100Hz to 6,500Hz
· Sensitivity (microphone): -42dBV/PA +/- 3dB
· Input Impedance: 20 Ohms

The computer used was a Dell Latitude E5430.

[bookmark: h.itrnr52zuc66]6.2 Experiment

The n-gram order was chosen to be 3 because of the time it takes to build and because the ARPA format used was only supported up to a 3-gram in Julius. In our case it took 13 hours to build with the 3-gram taking the majority of the time. 51k 1-grams, 1,4 millions 2-grams and 4 millions 3-grams was created.

When the language model was built some errors occurred that was decided to not be fixed because of the sparsity of them and also because the time it might have taken to fix them. These are the errors that occurred:

· When the probability for a 3-gram was calculated it would in a few cases exceed 100% which is not possible, it happened in such few cases that it was just changed to 100% in those few ones.
· When the dictionary of 133k words was used in order to search, in some rare cases the background program that we built it all on would crash. The strange part was that it only crashed on some few words and thus we removed those words, so that we would not build a n-gram around them. One of the words that was removed was “dss”. This sometimes caused a n-gram being built with a word that did not have a n-gram model around it. This later caused some problems so those had to be removed
· The dictionary of 133k words sometimes had the same word twice which cause the program to build 2 sets of a n-gram. This was fixed to that only one set of n-gram existed for each word.
· Some 3-grams that were calculated had only one occurrence which led to them getting a 100% of occurring once it happened, how this will affect the results is not yet known.
· In order to make sure that only the words that had phonemes was used all of the n-grams created that had a word in it without an phoneme transcription was completely removed. This mean that the probabilities in those cases will not be normalized.
· In order for it to work the n-grams had to be sorted alphabetically, this was something we noticed later that had to do with the APRA format.
· [bookmark: h.3fbe6ukcogra]To get the recognizer up and running, the tri-gram had to be discarded this was because the ARPA format did not accept the order the trigrams was written in. The order worked for the 2-grams when they were sorted alphabetically but the 3-grams did not.
· If a 2-gram contained a word that did not have a 1-gram an error would occur, in order to fix this we removed all the 2-grams that contained a word that was not in the 1-grams.

· The dictionary used in wavesurfer could not exceed a size of around 65k words. In order to fix this we only used the words from the 133k words dictionary that was used in the n-gram models. This caused us to have a dictionary of around 50k words.

· In order to get Wavesurfer to read the language model we first had to create it in the ARPA format and then change it into a binary format which was the standard for Wavesurfer to read.

[bookmark: h.xoq5qslt1pxe]

[bookmark: h.c66cqkjr8ao5]
[bookmark: h.ngn93y8eaokx]7. results

[image: Screen Shot 2015-06-02 at 16.34.40.png][image: Screen Shot 2015-06-02 at 16.34.23.png]

Spreadsheet 1&2 : The result for all the sentences with all the speakers

[image: Screen Shot 2015-06-02 at 16.47.54.png]

Spreadsheet 3: The performance indicators

The three spreadsheets show the accuracy of each sentence from each speaker i.e. F1 is the first Female and S1-2 is the second try for the first sentence.
The last spreadsheet shows the averages, for each speaker and for each kind of sentence. GloAVE is the average for the whole set of sentences, SameAVE is the average for the sentences that are related to the corpus, MedAVE is for the sentences that use a vocabulary that is supposed to be neutral, and HSAVE is for the sentences that are not related to the corpus.

[bookmark: h.nnd84wve5fmv]8. Discussion and conclusion

We faced a lot of troubles trying to use the ARPA format, this was mostly because the documentation on it was lacking information, so we had to fix each problem as they showed up. The error messages were not so easy to read from wavesurfer because of the fact that it expected a binary format as a default. So in order to read the error messages we had to use Julius as a standalone program. There were a lot of troubles to get julius to work on windows or a mac which was the OS we had on our computer so we had to get the teacher to run it on his ubuntu computer and then we tried to fix the error message. It might have been easier to use the ubuntu computer in the computer rooms but the space required for all the files did not fit into the small space that was allocated on the harddisk for us. Our recommendation for using the ARPA format is that you first use a toolkit that generates it and then copy it so that your program writes it in that format.

The results we received in the end was surprisingly good considering that we only used the second order of n-gram. We can see that the global recognizer is pretty accurate given that one out of five word is recognised on average (AVE of GloAVE) and if we have a look at the sentences that are relevant to the corpus, the accuracy reaches one out of three word.
On the last three sentences, we can see that sentence 12 “Wherefore art thou romeo” has an accuracy of 0 almost every time, except the name “Romeo”, none of the words are in the dictionary, and the odds for it to be recognized are really low. This was expected and means that the language models has a close correlation to the corpus used to train it.

The most important issue we faced was the trouble to use trigram, their creation was time consuming but we were not able to use them for the recognizer. One can note that the performance of the recognizer would likely been much better if 3-grams had been used.

[bookmark: h.7m4vpru6akc1]9. References
		 	 	 		
[1] Mohammad Bahrani, Hossein Sameti, Nazila Hafezi, and Saeedeh Momtazi. “A New Word Clustering Method for Building N-Gram Language Models in Continuous Speech Recognition Systems ” .
 DOI ={10.1007/978-3-540-69052-8_30} URL : Link to the article 			
				
[2] R􏰄 Rosenfeld􏰄. “The CMU Statistical Language Modeling Toolkit􏰃 and its use in the 􏰆􏰌􏰌 ARPA CSR Evaluation􏰄 In ARPA Spoken Language Technology Workshop􏰃 Austin􏰃 TX􏰃 (January 􏰆􏰌􏰌􏰊􏰄1995)
URL : Link to the article
				
[3] Robinson et al., 1995, T. Robinson, J. Fransen, D. Pye, J. Foote, S. Renals.
“WSJCAM0: a British English speech corpus for large vocabulary continuous speech recognition”
Proc. IEEE ICASSP-95, Detroit, MI, Vol. 1 (May 1995), pp. 81–84 URL: Link to the article

image02.png
§88 233>

F88=E a3

S511-1

o 0o o0 oo oo o

GloAVE
0,299
0,376
0,222
0,472
0,161
0,278
0,327
0,443

0,32225

S511-2

(= =]

0,25

o o o o

SameAVE
0,299
0,376
0,222
0,472
0,161
0,278
0,327
0,443

0,32225

S12-1

MedAVE

0,1
0.2
04

0,33

0.2
0,33

0,183
0,221
0,231
0,497
0,117

0,13
0,264
0,117

0,22

S12-2
0,18
0.5
0.3
0.6

0.4
0.3
0.1

HSAVE
0,06333333333
0.1
0,2166666667
0,275
0,06666666667
0,055
0,08333333333
0,105

0,120625

S13-2
0.2
04
0.2

o o o

04
0.2

0.2

image05.png
F8RE2a32

SRR R

511 S1-2
0,6

0.8

0,6

0,2

0.8

04

0,59
0,5

0.2

0.2

04

04

04

0,38
0,25
0,25

0,13
0,38
0,25

0,14
0,43

0,57
0,14
0,57

0,29

0,33

0,17
0,67

0,17

S7-2

0,29
0,14
0,43
0,14
0,97

0,71

0,17
0,67
0,17
0,67
0,17
0,17

0,29
0,71
0,97

0,67

043
0,14

017

0.83

033

017
0,33

017
043

0,57

0,14
0,57
0,57

017

0,33

0,17
0,67

S9-1

0.2

0.2

0.2

0.2
0.2
04

04
S9-2

0,33

0,17

0.5

0.5

0.2
04
0.2
04

0.4

0.2

S10-1
0,33

0.5
0,17

552
05
0,25
0,25

0,25

05
0,25
05
S510-2
0,25
0,25
05
05

0,25

0.5

0,25

0,25

0,25
0,75
0,75

0,25

0.5
0,25

image03.png
F1
F2
F3
F4
M1
M2
M3
M4
AVE

GloAVE

0,2
0,2526923077
0,2242307692
0,4361538462
0,1223076923
0,1696153846
0,2465384615
0,2396153846
0,2363942308

SameAVE
0,299
0,376
0,222
0,472
0,161
0,278
0,327
0,443
0,32225

MedAVE

0,183
0,221
0,231
0,497
0,117

0,13
0,264
0,117

0,22

HSAVE

0,06333333333

0,1
0,2166666667
0,275
0,06666666667
0,055
0,08333333333
0,105

0,120625

