
DT2118 H. Lilja

Automatic Speaker Recognition:
Spoofing, Obfuscation and Counter Measures

Hanna Lilja
920112

hanlil@kth.se

Abstract

In many applications of speaker recognition there is a possibility
that a user tries to deceive the system. A person might attempt to
sound like someone else to either get past an authorisation process
or to avoid being recognized. When designing systems which are po-
tential targets of such user behaviour it is essential to take this into
account, as to ensure that mistakes by the system are kept to a mini-
mum. There are various ways of fooling a speaker recognition system
and also different ways of spotting it. This paper aims to summarise
some approaches to both the former and the latter. A recurring theme
in the detection methods is the use of the phase spectrum of a speech
signal, and the use of temporal information.
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1 Introduction

Speaker recognition, as opposed to speech recognition, is the field of research
and technology which deals with identifying who is speaking, rather than
what is being said. Naturally, this has numerous applications. One such area
of application is speaker verification, used as a biometric mean of authen-
tication. Another is speaker identification. In the former case the speaker
claims to be a certain person and the task for the system is to determine if
the claim is true or not. In the latter, an unknown speaker is to be identified
by the system.

With this type of applications one has to take into account the possibility
of a user intentionally trying to deceive the system. The nature of the decep-
tion depends on what kind of application it is. A speaker verification system
is particulary vulnerable to spoofing, meaning that an imposter is trying to
prompt a false accept response from the system. There are multiple ways,
of varying degrees of sophistication, to achieve this, some more challenging
than others to counter when designing the system.

In the case of speaker identification, for example in the context of surveil-
lance, there is a risk that a target takes measures to avoid detection through
obfuscation. This means that a speaker disguises or manipulates their speech
in order to make the system unable to identify who is speaking, i.e. to pro-
voke a missed detection.

In some aspects, obfuscation is more difficult to deal with than spoofing.
One reason is that systems targeted with spoofing often by design has the
impostors cooperation in terms of acquiring input such as speech signals,
this may not be the case in a surveillance setting and hence the speech signal
the system has to work with may be noisy or in other ways of lower quality.
Obfuscation is also easier to achieve compared to spoofing, as the former
only requires imitation of any voice other than the speaker’s own, whereas
spoofing requires imitation of a specific speaker.

In this paper recent findings and development related to countering spoof-
ing and obfuscation are discussed. Section 2 briefly describes some models
and methods used in speech signal analysis and state-of-the-art speaker recog-
nition systems. Vulnerabilities and counter measures related to spoofing and
obfuscation are discussed in section 3 and 4 respectively. This is followed by
a general discussion (section 5) and summary (section 6).
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2 Background

Automatic speaker verification (ASV) is the task of verifying if a speaker
is of a clamied identity or not, i.e. a binary authentication decision where
the identity claim is either accepted or rejected. An ASV system can be
either text-dependent or text-independent. If the system is text-dependent
the speaker must utter a certain pass-phrase in order to be accepted whereas
in the case of a text-independet system any phrase can be uttered.

A speech signal can be viewed as quasi-stationary within short time pe-
riods (order of magnitude 10−2 seconds) and as such a short-time Fourier
transform can be applied. The Fourier transform of a speech signal x(n) is
on the form:

X(w) = |X(w)|ejφ(w)

|X(w)| is refered to as the magnitude spectrum and φ(w) the phase spectrum.
From the magnitude spectrum so called Mel-frequency cepstral coefficients
(MFCC) can be obtained. This is done by computing the power spectrum
|X(w)|2, applying a Mel-frequency filter bank to the power spectrum and
then applying a discrete cosine transform to the logarithm of the output of
the filter bank.

When analysing the phase spectrum a useful tool is the group delay func-
tion, which measures the nonlinearity of the phase spectrum. It is defined
as:

τ(w) =
XR(w)YR(w) +XI(w)YI(w)

|X(w)|2

where Y is the short-time Fourier transform of nx(n), and R and I denotes
the real and imaginary parts respectively. In order to capture finer details
of this spectrum a modified version of the group delay function is sometimes
used. A smoothed power spectrum, denoted |S(w)|2γ, is used instead of the
afore mentioned one. The modified group delayed function is defined as:

τγ(w) =
XR(w)YR(w) +XI(w)YI(w)

|S(w)|2γ

The corresponding modified group dealy phase spectrum is:

τα,γ(w) =
τγ(w)

|τγ(w)|
|τγ(w)|α

and by applying a discrete cosine transform the phase spectrum cepstral
coefficients can be obtained.
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One often used method for speaker recognition is a Gaussian Mixture
Model (GMM) with a Universal Background Model (UBM). The general idea
is to train the UBM with speech samples from a large set of speakers, so that
it represents the speaker-independent characteristics of speech. A speaker-
specific GMM is trained on speech samples from that particular speaker.
For an unkown speaker the likelihood can then be computed with respect to
a speaker-specific GMM and the UBM respectively, and the ratio between
them serves as score of how well the speakers match. An UBM can also be
used as a prior in the training of speaker-specific models.

A common practice in some speaker recognition methods is to put the
mean vectors of the speaker specific GMM components together in a GMM
supervector. With these supervectors as feature vectors, classification meth-
ods such as support vector machines (SVM) with different kernels can be
used. As the supervectors may contain information other than speaker re-
lated, such as channel information, it is desirable to divide it into compo-
nents which can each be represented by a low dimension set of factors. This
is known as a type of factor analysis (FA). I-vectors are one application of
factor analysis used for speaker recognition.

2.1 Other relevant concepts

Vector quantization (VQ) is a method of modelling probability density dis-
tributions in data represented as vectors, based on prototype vectors which
can be learned from the data or pre-determined. Data is indexed according
to the closest prototype vector.

Equal error rate (EER) is a performance metric used for biometric systems
(such as an ASV system). It is the rate at which the false match rate (FMR)
is equal to the false non-match rate (FNMR). In general the EER can be seen
as a threshold corresponding to how similar an input needs to be a template
to be considered a match.

3 Spoofing

In this section different spoofing approaches, along with recent findings in
terms of counter measures, are discussed. Covered topics are spoofing through
artificial signals, converted speech, synthetic speech, and recordings respec-
tively.
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3.1 Artificial signals

One relatively simple way of spoofing is the use of artificial signals, that is
signals that are tone-like rather than speech-like. The idea is to exploit the
fact that certain parts of a speech signal yields higher scores or likelihoods
than other parts. A study into the vulnerability of some state-of-the-art ASV
systems with respect to this type of spoofing is presented in [1]. In this case
the artificial spoofing signals are generated by identifying intervals of speech
signals short enough for all frames within them to generate high scores, with
the additional requirement that there are enough frames to compute relevant
model dependent parameter values. These intervals are then repeated and
concatenated to get a signal of sufficient length.

The authors propose and evaluate two approaches to counter spoofing
with artificial signals. The first method is based on speech signal features
extracted on utterance level. The original model parameters from the speech
signal are indexed through vector quantization with respect to the means
of the UBM. The index vector can be represented by a histogram, which is
reordered and rescaled to produce a new feature vector which describes the
whole utterance. For a genuine speech utterance the values of this feature
vector will decrease exponentially, whereas for a spoof signal the distribution
will look more like a Dirac delta distribution, dominated by the first vector
element. The second method is based on voice quality assessment; a state-of-
the-art tool designed for this purpose is used. With this tool a mean opinion
score ranging from 1 to 5 is computed for each utterance.

The vulnerability to this type of spoofing is evaluated on 3 different ASV
systems: a standard GMM system with an UBM, a system based on factor
analysis (FA) and an SVM applied to supervectors from the GMM-UBM
system. The first two systems are used with 2 different parameter setups, 33
and 50 parameters respectively. The parameterisation with 33 components
is used to generate the spoofing signals. The EERs of the different systems
under spoofing are compared to their respective baseline EERs, these results
are shown in Table 1. As can be seen, ERRs for both the GMM and FA
systems are greatly increased under spoofing with only slightly better per-
formance when different parameterisations are used for speaker verification
(50) and signal generation (33). The SVM model is inherently robust to this
type of spoofing, as shown by the really low ERR under spoofing.

The methods of countering artificial signal spoofing are evaluated by look-
ing at how well they separate spoofing signals from real speech signals. It
turns out that voice quality assessment tool is moderately successful in de-
tecting spoofing attempts as the score distribution of spoofing and genuine
signals partly overlap, and also causes some false rejection errors. In terms
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Model Parameterisation Baseline EER [%] Spoofing EER [%]
GMM 33 8.5 77.1

FA 33 4.8 64.2
GMM 50 7.7 66.3

FA 50 4.2 57.7
SVM 33 7.8 4.1

Table 1: Baseline and spoofing EERs for different systems.

of EER the detection performance is 27%. The utterance level extracted
features manage to completely separate spoofing signals from real signals
and hence has a 0% EER performance. It is worth noting that the voice
quality tool is based only on general speech knowledge whereas the utter-
ance level feature method is less general in terms of what types of artificial
spoofing signals it can detect. The authors conclude that while the SVM
system and utterance level feature model works well on the particular type
of artificial signals investigated, more general countermeasures are needed to
protect against unforseen types of spoofing. They suggest the use of frame
level score distributions instead of averaged frame scores as a possible way
towards making ASV systems more robust to spoofing with artificial signals.

3.2 Converted speech and synthetic speech

An alternativ approach to spoofing is the use of converted speech or syn-
thetic speech. This topic is studied in [2] where an approach based on phase
spectrum analysis is proposed, and in [3] where the idea is to distinguish be-
tween different types of speech by looking at long-term temporal information
derived from both magnitude and phase spectrums. One can exploit the fact
that speech synthesis is often done on frame level, where consecutive frames
are assumed to be independent of each other, and temporal artifacts may be
introduced as a result.

The study presented in [2] is focused on detecting converted speech.
Speech conversion is the process of modifying the speech of a source speaker
to sound like that of a target speaker. The original speech signal is analysed
and parameters like fundamental frequency and spectral envelope parame-
ters are extracted. These parameters are converted according to the target
speakers voice and passed on to the synthesis model to create the converted
speech signal. In this process the phase information is ignored and therefore
lost.

Two different models are used to extract information from the phase spec-
trum, cosine normalisation and frequency derivative. In cosine normalisation
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the phase spectrum is normalised and the discrete cosine transform is applied,
coefficient 1 through 12 are kept as features. The frequency derivative is ob-
tained with the help of a modified group delay function. The discrete cosine
transform is applied to the output of the group delay function and coefficient
1 through 12 are used. The latter feature set is also refered to as modified
group delay cepstral coefficients (MGDCC).

In the experiments performed to evaluate these methods the classification,
i.e. the decision if an input signal is natural speech or not, is based on the
ratio between log scale likelihoods log(C | λ) where C is a feature vector and
λ is a GMM model for either natural speech or converted speech. Results
from three different experimental setups are reported, with different training
procedures for λconverted. With setup A λconverted is trained on samples of
GMM-based converted speech while with setup B samples of unit-selection
based converted speech are used as training data. With setup C it is assumed
that no converted speech is available but the analysis and synthesis modules
of the conversion model is. The parameters from the speech analysis are
passed directly to the synthesis and the resulting reconstructed signal is used
as training data for λconverted.

λnatural is the same for all setups. The perfomance of standard MFCC
features is reported for comparison. The results in terms of EERs are pre-
sented in Table 2. The conclusions are that features extracted from the
phase spectrum performs significantly better than standard MFCC in detec-
tion of converted speech and that the analyisis-synthesis approach is a viable
alternative to converted speech data for training.

Feature model EER [%] - A EER [%] - B EER [%] - C
MFCC 16.80 15.35 20.20

cosine normalisation 6.60 3.93 5.95
frequency derivative 9.13 4.60 2.35

Table 2: Results for detection of converted speech.

In [3] the focus lies on detecting speaker adapted synthetic speech. The
proposed model is based on modulation features which capture speech varia-
tion across frames. MFCC and MGDCC features, which are both extracted
on frame level, are used as a base line in this study. The modulation features
can be extracted from both the magnitude and the phase spectrum. The
spectrogram is divided into segments of 50 frames, with a shift of 20 frames.
A Mel-scale filter bank of size 20 is then applied to each frame in a segment,
and the trajectory over frames for each filter bank component is normalized to
have mean 0 and variance 1. A modulation spectrum is obtained by applying
fast Fourier transform to each of the normalized trajectories and concatenate
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each resulting spectra to one vector. Principal component analysis is applied
to this vector in order to reduce the dimensionality, the 10 dimensions with
largest variance are kept and used as modulation features for the segment.
Features obtained from applying the procedure to the magnitude spectrum
and phase spectrum are refered to as magnitude modulation (MM) and phase
modulation (PM) respectively.

As in the experiments described in [2] the classification is based on the
ratio between log scale likelihoods log(C | λ) where C is a feature vector
and λ is a GMM model, in this case for either natural speech or synthetic
speech, according to: L(C) = log(p(C | λsynthetic)) − log(p(C | λnatural)). In
order to utilize both short-term spectral and long-term temporal information
a combined scoring system is introduced: Lcombined(C) = (1 − α)LA(C) +
αLB(C) where α is a weighting factor and A and B are two different feature
models.

The experiments presented in [3] evaluate the performance of each fea-
ture model on its own, as well as the performance of different combinations
of features and the influence of α, in terms of EERs. The results for the
individual feature models are shown in Table 3. From this it is clear that
features derived from the phase spectrum (MGDCC and PM) perform better
than the ones derived from the magnitude spectrum (MFCC and MM). It is
also noted that the modulation features do not perform well on their own.

Feature model MFCC MGDCC MM PM
EER [%] 10.98 1.25 19.29 13.71

Table 3: EERs for detection of synthetic speech for individual feature models.

The lowest EER achieved with each combination of two feature models,
along with the value of α at which is was obtained, is displyed in Table 4.

Feature models (A + B) EER [%] α
MFCC + MGDCC 1.02 0.4

MM + PM 13.33 0.2
MFCC + MM 8.51 0.3
MFCC + PM 7.17 0.5

MGDCC + MM 0.98 0.5
MGDCC + PM 0.89 0.7

Table 4: Lowest EER for detection of synthetic speech for combined feature
models.

As can be seen, the best results are obtained by combining spectral fea-
tures with temporal ones. The temporal features do not contain enough
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information on their own, but do hold complementary information such as
temporal distortions not captured by the spectral features, which significantly
improves the classification.

3.3 Recordings

A third approach to spoofing is the use of recodings, i.e. an impostor play-
backs a recording of the target voice to spoof an ASV system. An approach
to classify different types of impostors is presented in [4]. The trials a text-
dependent ASV system may encounter are divided into four categories: gen-
uine trials (correct pass-phrase, target speaker), naive impostures (wrong
pass-phrase, impostor speaker), sly impostures (correct pass-phrase, impos-
tor speaker) and playback imposture (wrong pass-phrase, target speaker).
The aim of the study is to classify and counter all types of impostors with
the same system and thereby avoid additional computational costs.

A number of verification scores are introduced. The first one is a text-
independent score, defined as Sti(X) = log

Lλgmm (X)

Lλubm (X)
where X is a feature

vector, L is the likelihood, λgmm is a speaker-dependent, text-independent
GMM and λubm a speaker- and text-independent UBM. This can be inter-
preted as the log likelihood ratio between the hypothesis that the speaker is
the target speaker, and the hypothesis that the speaker is an impostor.

Secondly, a text-dependent score is computed, Std = log
Lλhmm (X)

Lλubm (X)
, where

λhmm is a speaker- and text-dependent HMM, the likelihood based on the
HMM is computed through the Viterbi algorithm.

Thirdly, a speaker normalised score is introduced to specificly target the
playback imposture category. This score compares the hypotheis that the
target speaker is prounouncing the correct pass-phrase to the hypothesis
that the target speaker is pronouncing any pass-phrase, it is defined as Ssn =

log
Lλhmm (X)

Lλgmm (X)
.

The imposture classification is done with respect to the Std and Ssn scores
in a 2 dimensional space. To evaluate the performance of this classification
process directly it would be necessary to set fix values for the costs of mis-
classifications. To avoid doing that a new multi-class score is introduced:
Cllr = − 1

T

∑T
t=0wtlog2(Pt). Pt is the posterior probability of the true class of

a trial t, given a uniform prior, and wt is a normalising weight factor. This
is a positive score measuring the performance of the classifier, the lower the
score the better.

The results of two experiments are reported. The first evaluates the indi-
vidual performance of the three scores Sti, Std and Ssn in terms of EERs, the
results are displayed in Table 5. In the second experiment the Cllr score for
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the dual-score classification is compared to Cllr for classification based only
on the Std score. These results are presented in Table 6. Both experiments
are divided into male and female speakers.

Male Female
Impostor type Sti Std Ssn Sti Std Ssn

Playback 43.48 6.23 0.59 42.99 2.50 0.22
Sly 6.14 1.82 1.90 5.29 0.93 0.88

Naive 5.53 0.59 0.20 4.63 0.12 0.07

Table 5: EERs [%] for detection of different types of impostors.

Classification feature(s) Cllr (Male speakers) Cllr (Female speakers)
Std 0.9429 0.8860

Std + Ssn 0.6110 0.6325

Table 6: Cllr scores for classification based on Std and a combination of Std
and Ssn respectively.

As can be seen, the Ssn score outperformes Sti and Std in terms of EER
when it comes to detecting playback impostors, it also improves the detection
of naive impostors while maintaining the performance of Std for sly impos-
tors. For the multi-class imposture classification there is lack of equivalent
methods to compare with and therefore difficult to do an absolute evaluation.
However, there is a significant improvement with the use of dual-score based
classification, compared to using only the Std score.

4 Obfuscation

Obfuscation relates to the task of identifying an unknown speaker, for exam-
ple in a surveillance scenario, and refers to the effort of the speaking target
to avoid detection. The vulnerability to obfuscation in speaker recognition
system has recieved less attention than the threats of spoofing. Nonetheless
it is an important problem and according to [5] obfuscation increases the
EER of a standard GMM-UBM system from 9% to 48%, and the EER of a
i-vector system from 3% to 20%. The paper presents an assessment of the
impact of obfuscation through voice conversion on different ASV systems as
well as a new approach to detect obfuscation.

The assessment involve six differnt ASV systems. A standard GMM-UBM
system shows the greatest vulnerability to obfuscation, whereas an i-vector
system is the most robust one. The EERs with conversion towards the UBM,
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a random speaker and the most dissimilar speaker respectively, are shown in
Table 7.

Conversion target GMM-UBM i-vector
None (baseline) 8.7 3.0

UBM 34.2 8.0
Random 34.5 12.0

Dissimilar 47.7 20.0

Table 7: EERs [%] for different conversion settings.
The proposed approach for obfuscation detection is to exploit the ab-

sence of natural spectro-temporal variability in conversed speech through
local binary pattern (LBP) analysis of speech spectrograms [6]. This detec-
tion method is shown to perform well in the sense that there is almost no
degradation of performance for the ASV systems due to obfuscation in the
region of low missed-detection rates, i.e. almost all obfuscation attempts are
detected.

5 Discussion

Most of the mentioned counter measure methods described are at least to
some extent based on an assumption of what type of spoofing or obfuscation
a system is targeted with, which affects what anomalies or artifacts in the
speech signal may be exploited in order to detect a spoofing or obfuscation
attempt. One of the major challenges when applying this type of theory
to practice is of course to protect a system against attacks of unpredicted
nature. It is also a never ending race against development in other areas of
speech technology, in the sense that more sophisticated spoofing and obfus-
cation methods evolve. For example, as the quality of state-of-the-art speech
synthesis improve the more difficult it might become to distinguish it from
natural speech.

Keeping up with the technology of potential attackers is one reason why
continued research into counter measures is essential, another is the often
relatively sensitive nature of the applications of speaker recognition. In a
speaker verification system there may be very little room, or indeed no room
at all, for mistakes in terms of false accepts. However, a more restrictive sys-
tem is likely to cause a larger number of false rejects. While the consequences
of the latter type of error may be less severe, the occurance of them has to
be kept low for the system to be useful. There will always be a trade-off
between these two error types, improved spoofing detection makes finding a
reasonable balance easier.
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6 Summary

There are several ways in which spoofing, i.e. an impostor provoking a
false accept response from a speaker verification system, can be performed.
Among these are spoofing through artificial signals, converted speech, syn-
thetic speech, and recordings. Different spoofing techniques have different
weaknesses which can be exploited when trying to detect a spoofing attempt.

Common tools for this task are features derived from the phase spectrum
of a speech signal, and features containing temporal information gathered
over time periods significantly longer than typical signal frames. Another
recurring concept is that of combining different scores or features that in one
way or another cointain complementary information, to improve classification
of genuine and impostor trials.

Obfuscation has so far recieved less attention in terms of research, but
an approach to detect conversion based on temporal information has been
suggested.
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