
Magnus Persson Embedded Systems for Mechatronics 1, MF2042
Martin Grimheden Power Management LAB
Per Mackegård KTH Mechatronics Lab
Jad El-Khoury

 1

Power management lab
Version 2013-11-03

Aim
Familiarity with the clock settings and sleep modes of the AVR32, practical
experience of power consumption of CMOS devices at different clock speeds, usage
of the PM (power manager) and RTC (real time counter) on-board peripherals.

Literature
Data sheet “AT32UC3A” AVR32 32-Bit Microcontroller (the manual)

 Chapter 13. Power Manager (PM)
 Chapter 14. Real Time Counter (RTC)

Document “AVR32739: AVR32 UC3 Low power software design”
http://www.atmel.com/dyn/resources/prod_documents/doc32093.pdf

Header files: pm.h, rtc.h, power_clocks_lib.h
C files: pm.c, rtc.c, power_clocks_lib.c

Brief summary
This exercise gives a basic introduction to the power management features of the
AVR32 chip, both in terms of setting different clock speeds for the CPU and using the
different sleep modes. We also get an introduction to the real-time counter.

Further, practical measurements on the power consumption of the CPU and other
devices of the EVK1100 board will be performed, to give you a gut feeling for what
consumes power in an embedded device.

We will use a simple LED blinking program for demonstration purposes.

Reporting
Demonstrate the programs for the teaching assistants. Discuss the results of the power
measurements with your teaching assistant – are the results as expected from theory?
If not, discuss possible sources of the discrepancy.

Magnus Persson Embedded Systems for Mechatronics 1, MF2042
Martin Grimheden Power Management LAB
Per Mackegård KTH Mechatronics Lab
Jad El-Khoury

 2

0. Introduction and overview
In this lab you are expected to practically evaluate the theory of this week’s lecture
and also get acquainted with the power saving features of the AVR32 chip.

This exercise is based on the following setup and philosophy:

1) First, the clock management functions of the AVR32 will be introduced
2) Then you will perform practical measurements of a simple program with the

processor running at different frequencies.
3) You will further set up the real-time counter to get a reliable time source
4) You will then use the sleep modes of the processor to reduce power usage, and

compare it to previous power usage.
5) You will also practically measure and evaluate the power usage of some of the

external and on-chip peripherals of the EVK1100 board that you have used in
the course.

6) As the last part, you will implement a simulated pace-maker using the board.

1. Using the clock management functions
The clocks of the AVR32 can be derived from several sources, an internal high-
precision 32 kHz source, an RC oscillator (low-precision) at approximately 115 kHz,
and an off-chip crystal oscillator. The EVK1100 board is equipped with a 12 MHz
oscillator.

The main purpose of the 32 kHz oscillator is to work as a high-precision time source
for the RTC (real-time counter). The RC oscillator and external crystal oscillator(s)
are used mainly as sources for the clocks for the CPU and the different on- and off-
chip buses.

Within the AVR32 chip, the off-chip oscillator may be used to generate several
different clocks through the use of PLLs (phase-locked loops, a device that can
produce a high-frequency signal at an integer ratio of a low-frequency one) and
dividers. There are two different PLLs: PLL0 and PLL1. Only PLL0 can be used for
setting up a CPU clock, but both can be used to setup generic clocks for other
purposes. The latter type of clocks will not be covered in this lab. The setup is shown
in the following block diagrams:

The CPU and the different buses on the chip may run at different clock speeds. By
default, the CPU runs off the RC oscillator (~115kHz) and hence is quite slow. By

Magnus Persson Embedded Systems for Mechatronics 1, MF2042
Martin Grimheden Power Management LAB
Per Mackegård KTH Mechatronics Lab
Jad El-Khoury

 3

switching the CPU to the external crystal oscillator instead, and using the PLL, a
significantly higher clock speed can be reached, as you have already tried. The aim of
this task is to help you understand how the clock speed is set.

Setting up the clock and PLL manually
There are several different clocks – the CPU and the buses can all be clocked
separately depending on your needs. The normal way of adjusting the clock frequency
is to adjust the PLL settings. This can be done either at startup or on-the-fly during
program execution, giving the possibility of dynamic adjustment of the processor
frequency based on workload.

The PLLs have the following main parameters:

 PLLOSC, which chooses if the PLL should run off of oscillator 0 or 1. In this
lab exercise, we will stick to 0.

 PLLMUL, which gives the multiplier for the PLL. See the formula below!
 PLLDIV, which gives the divider for the PLL. See the formula below!
 PLLOPT, which gives the options for the PLL.

The frequency of the PLL oscillator is calculated as follows:

0)1(2

0
)1(

PLLDIVfPLLMULf

PLLDIVf
PLLDIV

PLLMUL
f

OscVCO

OscVCO

 if

 if

If PLLOPT[1] is set to one, fPLL= fVCO/2
If PLLOPT[1] is set to zero, fPLL= fVCO

Magnus Persson Embedded Systems for Mechatronics 1, MF2042
Martin Grimheden Power Management LAB
Per Mackegård KTH Mechatronics Lab
Jad El-Khoury

 4

The following functions from pm.h can be used to set the clock to an arbitrary clock
speed (within the chip specifications):

pm_switch_to_osc0();
pm_pll_setup();
pm_pll_set_option();
pm_pll_enable()
pm_wait_for_pll0_locked();
pm_cksel();

We will use the example code previously used to setup the clock for 33 MHz
operation as an example to explain the code executed to manually setup the clocks
and PLL through the power manager module. Please refer to the pm.h file for further
reference for the function calls.

pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP);

The clock is switched to the external oscillator. The parameters give the
address to the power manager, the clock frequency, and the startup time for
the oscillator.

pm_pll_setup(&AVR32_PM, 0, // pll.
 10, // mul.
 1, // div.
 0, // osc.
 16); // lockcount.

PLL0 is setup to use the multiplier 10, the divider 1, is to use oscillator 0, and
the lockcount 16. This results in the following VCO clock frequency:

MHz MHz 13212
1

110)1(

 OscVCO f

PLLDIV

PLLMUL
f

pm_pll_set_option(&AVR32_PM, 0, // pll.
 1, // pll_freq.
 1, // pll_div2.
 0); // pll_wbwdisable.

The options for PLL0 are set. The frequency range is 80-180 MHz, i.e.
pll_freq is set to 1 instead of 0 (corresponds to 160-240 MHz), the
frequency is divided by 2 after the PLL (pll_div2 is set to 1), and the
special wide bandwidth mode (allowing a faster startup) is not used.

This gives fPLL= fVCO/2 = 66 MHz.

pm_pll_enable(&AVR32_PM, 0);
pm_wait_for_pll0_locked(&AVR32_PM);

Enable PLL0 and wait for it to properly lock.

pm_cksel(&AVR32_PM,
 1, // pbadiv.
 0, // pbasel.
 1, // pbbdiv.
 0, // pbbsel.

Magnus Persson Embedded Systems for Mechatronics 1, MF2042
Martin Grimheden Power Management LAB
Per Mackegård KTH Mechatronics Lab
Jad El-Khoury

 5

 1, // hsbdiv.
 0); // hsbsel.

Choose the new clocks for the buses. If the relevant DIV setting is set, the
clock will be subdivided. For example, if CPUDIV is set to 1, the CPU speed
will be

)1(2
CPUSEL

main
CPU

f
f

The pm_cksel function always sets the CPU speed to the same clock speed
as the high speed bus (CPUSEL = HSBSEL and CPUDIV = HSBDIV). In this
call, this means that the CPU speed will be

MHz
MHz MHz

33
2

66

2

66
)10()1(

 CPUSELCPUf

If you want to run the CPU (and high speed bus) at 66 MHz instead, you may
change the parameter hsbdiv to “0” instead, to use an undivided clock for
the CPU and high speed bus. If you have low requirements on bus bandwidth,
you may also choose to use different dividers for the buses. At this point, the
setup of the new PLL is complete.1

Please note that the maximum clock frequency for the CPU is 66 MHz, for bus
A is 33 MHz, and that the bus frequencies must not be larger than the CPU
frequency.

pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLL0);

 This line of code makes the power manager switch to using the new clock.

Task

a. Create a new project, include the software framework drivers GPIO, INTC,
PM and RTC which are the ones that will be used in this exercise.

b. Build a simple LED blinking application which toggles a LED at
approximately 1 Hz, by using a software delay through e.g. the following
function:

static void software_delay(void)
{
 volatile int i;
 for (i=0; i<1000000; i++);
}

Make sure that the CPU is running at 12 MHz by including the following line
early in your main function:
 pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP);

c. Fill out the table on the following page with clock settings for the different
clock speeds. Start by choosing a suitable frequency to be output from the
PLL. Please note that the PLL does not work with all settings – if the ones
you have chosen do not work, try alternative ones! Specifically, the PLL will
fail if you run it outside of its specifications (e.g. allowed frequency range).

1 If you later intend to use the flash controller using a higher frequency than 30 MHz, you will also
need to insert an additional wait state for the flash controller by executing the following code before
switching to a new clock with a higher clock frequency than 30 MHz:

flashc_set_wait_state(1);

Magnus Persson Embedded Systems for Mechatronics 1, MF2042
Martin Grimheden Power Management LAB
Per Mackegård KTH Mechatronics Lab
Jad El-Khoury

 6

d. Test all your clock setting combinations, measure (e.g. with your wristwatch)
or simply estimate the blinking frequency, and measure the power
consumption using an amperemeter. In order to connect it, you need to supply
power through the external jack instead of through USB (switch in position
“EXT”). There are custom-made cables that you may use– its red cable needs
to be connected to +5V and the black one to ground.

 Clock speed [MHz]
Clock settings 2 12 33 48 66

PLL frequency chosen

PLLMUL

PLLDIV

PLL_FREQ

PLL_DIV2

PBADIV

PBASEL

PBBDIV

PBBSEL

HSBDIV

HSBSEL

Works as
expected?

Approximate
blinking freq.

Measured power
consumption

Magnus Persson Embedded Systems for Mechatronics 1, MF2042
Martin Grimheden Power Management LAB
Per Mackegård KTH Mechatronics Lab
Jad El-Khoury

 7

Hint: to simplify measurement, you may use the pushbuttons on the EVK board to
dynamically switch clock frequency at runtime.

Report
Demonstrate that you got the different clock frequencies running properly to one of
the lab assistants.
Add your measurements to the brief report. Discuss your findings shortly (a few
sentences only!)

2. Setting up the clock and PLL using the support
functions from power_clocks_lib.h

Setting up the clock and the PLL manually, as you just learnt, is quite cumbersome.
Hence, the power manager comes with a dedicated support library that helps you with
the calculations.

Task

a. Read the content of power_clocks_lib.h. Specifically check out the
function pcl_configure_clocks. Which function can you use if you
want to run from the RC (115 kHz) oscillator?

b. The function to be called to run the clock from the external oscillator needs a
struct as input. What is the needed content?

c. Try running your program in different clock frequencies using the support
library instead of directly (manually) adjusting the clock and PLL settings.

3. Using the real-time counter
The real-time counter is relatively simple. It can be run off of two different clock
sources, either the high-precision 32 kHz clock source or the low-precision RC
oscillator with an approximate frequency of 115 kHz. In this lab, we will keep to
using the 32 kHz source. The counter uses two main parameters: the prescaler and the
top value.

The prescaler can be used to set the base frequency for the RTC. The base frequency
is given by the following formula:
fRTC = 2-(PSEL+1) · (fRC or 32 KHz)
For every tick of the base frequency, RTC_VAL is increased by 1. When the value
RTC_TOP+1 has been reached, the counter wraps over and an interrupt is given if the
configuration has been done correctly. This means that an interrupt will be given with
every clock tick if RTC_TOP is set to 0, every second time if it is set to 1, and so on.

Magnus Persson Embedded Systems for Mechatronics 1, MF2042
Martin Grimheden Power Management LAB
Per Mackegård KTH Mechatronics Lab
Jad El-Khoury

 8

Task
d. Read the description of the RTC in the datasheet, and the support functions in

rtc.h. There is a predefined value which gives a 1 Hz counter with the 32 kHz
clock input. Which?

e. If you needed an interrupt every 2½ seconds, how would you change the setup
of the RTC?

f. Use the counter to rebuild your LED blinking application, toggling the LED
every 1 s based on an interrupt from the RTC.

Hints:
 It is a good idea to use the interrupts from the RTC. To get the

interrupts to work, you need to include the following code into your
main function (the following code assumes that your RTC interrupt
handler is named rtc_irq):

Disable_global_interrupt();
#if __GNUC__
 // Initialize interrupt vectors.
 INTC_init_interrupts();
 // Register the RTC interrupt handler
 //to the interrupt controller.
 INTC_register_interrupt(&rtc_irq, AVR32_RTC_IRQ, AVR32_INTC_INT0);
#endif
Enable_global_interrupt();

 In your interrupt service routine, of course you also need to clear the
interrupt. This can be done by the following code:
 rtc_clear_interrupt(&AVR32_RTC);

 Further, you need to setup the RTC properly. That is done by
successive calls (while interrupts are disabled) to the following
functions:

rtc_init
rtc_set_top_value
rtc_enable_interrupt
rtc_enable

 There is also an example project for the RTC driver, building a timer
clock which you may use as inspiration and help.

g. Try using different clock frequencies of the CPU. Does the behavior of the
LED change? Is the power consumption different compared to earlier? What is
the advantages of using the RTC instead of a software idle loop?

4. Using the sleep modes of the CPU
Finally, you are supposed to use the different sleep modes of the processor. There are
several different sleep modes in the processor, gradually shutting of additional parts
of the microcontroller and being hard to wake up from. Waking up from a sleep mode
is done automatically when an interrupt occurs – either from an internal source or an
external one. Hence, it is a good idea to build an event-driven system when trying to
build a power-scarce solution with an AVR32 processor.

The sleep modes range from idle (where only the CPU is shut down) to static (where
essentially everything is shut down and an external interrupt is needed to start the
microcontroller again).

Magnus Persson Embedded Systems for Mechatronics 1, MF2042
Martin Grimheden Power Management LAB
Per Mackegård KTH Mechatronics Lab
Jad El-Khoury

 9

In your current project, we already use an interrupt to trigger the change of status.
Hence, it is simple to put the CPU into the sleep mode when nothing needs to be done
(if no interrupts had been used, the CPU would simply have gone into sleep mode and
never woken up again!)

Task

a. Make your program use a sleep mode instead of the software delay if one of
the buttons is pressed. Going to sleep can be done by using the following code
in your main loop. Confirm that the code still executes in the same manner:
 SLEEP(AVR32_PM_SMODE_IDLE);

b. Measure the power consumption of the board. There should be a significant
difference! How big is the difference at different clock speeds, e.g. 12 MHz
vs. 33 MHz or 66 MHz?

c. Try also the other sleep modes. With which sleep modes does the blinking
application still work? With which ones does it fail to restart? Explain why it
doesn’t keep working with some sleep modes.

d. Measure the power consumption when running with a clock frequency of 66
MHz, using each sleep mode and fill in the table.

Sleep modes Blinking? Power consumption

Idle
__

Frozen
__

Standby
__

Stop
__

Deep stop
__

Static
__

Report
Add your measurements to the brief report. Discuss your findings shortly (a few
sentences only!)

Upload the C code to KTH Social.

Magnus Persson Embedded Systems for Mechatronics 1, MF2042
Martin Grimheden Power Management LAB
Per Mackegård KTH Mechatronics Lab
Jad El-Khoury

 10

5. Exploring the power consumption of the other peripheral
devices of the AVR32 and the EVK1100 board.

Task

a. Explore the other devices of the AVR32 and the EVK1100 board. How much
power do the USARTs use? The LEDs? The display? Is there any device that
is more of a power hog than the others?

Report
Add your measurements to the brief report and discuss your findings in text (a few
sentences only)

Hardware Power consumption

USART
__

All LEDs
__

LCD
__

__

__

