

Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf

Introduction to Visualization and Computer Graphics

Grids and Interpolation

Next Tuesday

• No lecture next Tuesday!

Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf

Grids and Interpolation

Structured Grids Unstructured Grids

Digital Data

- In most cases, the visualization data represent a continuous real object, e.g., an oscillating membrane, a velocity field around a body, an organ, human tissue, etc.
 - This object lives in an n-dimensional space the **domain**
- Usually, the data is only given at a finite set of locations, or samples, in space and/or time
 - Remember imaging processes like numerical simulation and CTscanning, note similarity to pixel images
- We call this a **discrete structure**, or a **discrete representation** of a continuous object

- Discrete representations
 - We usually deal with the reconstruction of a continuous real object from a given discrete representation

- Discrete structures consist of point samples
- Often, we build grids/meshes that connect neighboring samples

- Discrete representations
 - We usually deal with the reconstruction of a continuous real object from a given discrete representation

- Discrete structures consist of point samples
- Often, we build grids/meshes that connect neighboring samples

Data Connectivity

- There are different types of grids:
- Structured grids connectivity is implicitly given.
 - Block-structured grids combination of several structured grids
- Unstructured grids connectivity is explicitly given.
- Hybrid grids

combination of different grid types

Structured grids

- "Structured" refers to the implicitly given connectivity between the grid vertices
- We distinguish different types of structured grids regarding the implicitly or explicitly given coordinate positions of the grid vertices

uniform grid implicitly given coordinates

rectilinear grid semi-implicitly given coordinates

curvilinear grid explicitly given coordinates

Structured grids

- Number of grid vertices: D_{χ} , D_{γ} , D_{z}
- We can address every grid vertex with an index tuple (i, j, k)
 - $0 \le i < D_x$ $0 \le j < D_y$ $0 \le k < D_z$

Structured grids

- Number of grid vertices: D_{χ} , D_{γ} , D_{z}
- We can address every grid cell with an index tuple (i, j, k)
 - $0 \le i < D_x 1$ $0 \le j < D_y 1$ $0 \le k < D_z 1$
- → Number of cells: $(D_x 1) \times (D_y 1) \times (D_z 1)$

- Regular or uniform grids
- Cells are rectangles or rectangular cuboids of the same size
- All grid lines are parallel to the axes

- To define a uniform grid, we need the following:
 - Bounding box: $(x_{min}, y_{min}, z_{min}) (x_{max}, y_{max}, z_{max})$
 - Number of grid vertices in each dimension: D_x, D_y, D_z
 - \rightarrow Cell size: d_x, d_y, d_z

- Regular or uniform grids
- Well suited for image data (medical applications)
- Coordinate → cell is very simple and cheap
 - Global search is good enough; local search not required
- Coordinate of a grid vertex:

$$(i \cdot d_x, j \cdot d_y, k \cdot d_z)$$

• Cartesian grid

- Special case of a uniform grid: $d_x = d_y = d_z$
- Consists of squares (2D), cubes (3D)

- Rectilinear grids
- Cells are rectangles of *different* sizes
- All grid lines are parallel to the axes
- Vertex locations are inferred from positions of grid lines for each dimension:
 - XLoc = {0.0, 1.5, 2.0, 5.0, …}
 - YLoc = {-1.0, 0.3, 1.0, 2.0, ...}
 - ZLoc = {3.0, 3.5, 3.6, 4.1, ...}
- Coordinate \rightarrow cell still quite simple

• Curvilinear grids

- Vertex locations are explicitly given
 - XYZLoc = {(0.0, -1.0, 3.0), (1.5, 0.3, 3.5), (2.0, 1.0, 3.6), ...}
- Cells are quadrilaterals or cuboids
- Grid lines are not (necessarily) parallel to the axes

- Curvilinear grids
- Coordinate \rightarrow cell:
 - Local search within last cell or its immediate neighbors
 - Global search via quadtree/octree

3D curvilinear grids

- Block-structured grids
- combination of several structured grids

• Demands on data storage, an example:

DFG-funded SFB 557 Erik Wassen, TU Berlin, Germany 2008

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

to back of the Ahmed body

• Demands on data storage, an example:

→ Do not save every time step, not every variable, and not every block.

Grids and Interpolation

• Unstructured grids

2D unstructured grid consisting of triangles

3D unstructured grid consisting of tetrahedra (from TetGen user manual)

• Unstructured grids

- Vertex locations and connectivity explicitly given
- Linear interpolation within a triangle/tetrahedron using barycentric coordinates
- Coordinate \rightarrow triangle/tetra:
 - Local search within last triangle/tetra or its immediate neighbors
 - Global search via quadtree/octree

3D unstructured grid consisting of tetrahedra (from TetGen user manual)

How to store unstructured grids? Different requirements:

- Efficient storage
 - bytes per face / bytes per vertex
- Efficient access
 - of face / vertex properties (e.g., position)
- Efficient traversal
 - e.g., neighboring face, 1-ring of a vertex,...
- Requirements are competing

Face set

- Store faces
 - 3 positions
 - no connectivity ("match positions")
- Example: STL
 - very simple structure (too simple, unpractical!)
 - easily portable

Triangles								
X 11	y 11	Z 11	X 12	y 12	Z12	X13	y 13	Z13
X 21	Y 21	Z ₂₁	X 22	Y22	Z ₂₂	X ₂₃	Y23	Z ₂₃
•••						•••		
XF1	УF1	ZFl	XF2	Уг2	$\mathbf{Z}_{\mathbf{F2}}$	XF3	Угз	ZF3

36 B/f = 72 B/v no connectivity!

Shared vertex

- vertex table stores positions
- triangle table stores indices into vertices
- No explicit connectivity
- Examples: OFF, OBJ, PLY
 - Quite simple and efficient
 - Enables efficient operations on *static* meshes

12 B/v + 12 B/f = 36 B/v no neighborhood info

Face-based connectivity

- vertices store
 - position
 - face reference
- faces store
 - 3 vertex references
 - references to 3 neighboring faces

Edge-based connectivity

- vertex stores
 - position
 - reference to 1 edge
- edge stores references to
 - 2 vertices
 - 2 faces
 - 4 edges
- face stores
 - reference to 1 edge

120 B/v edge orientation?

Half-edge based connectivity

- vertex stores
 - position
 - reference to 1 half-edge
- half-edge stored references to
 - 1 vertex
 - 1 face
 - 1, 2, or 3 half-edges
- face stores
 - reference to 1 half-edge

96 to 144 B/v no case distinctions during traversal

• Half-edge based connectivity

Half-edge based connectivity: Traversal

- Building blocks
 - Vertex to (outgoing) halfedge
 - half-edge to next (previous) halfedge
 - half-edge to neighboring half-edge
 - half-edge to face
 - half-edge to start (end) vertex
- Example: Traverse around vertex (1-ring)
 - enumerate vertices/faces/half-edges

• Start at vertex

- Start at vertex
- Outgoing halfedge

- Start at vertex
- Outgoing halfedge
- Opposite halfedge

- Start at vertex
- Outgoing halfedge
- Opposite halfedge
- Next half-egde

- Start at vertex
- Outgoing halfedge
- Opposite halfedge
- Next half-egde
- Opposite ...

- Start at vertex
- Outgoing halfedge
- Opposite halfedge
- Next half-egde
- Opposite ...
- Next ...

• CGAL

• <u>www.cgal.org</u>

- Computational geometry
- Free for non-commercial use
- Open Mesh
 - <u>www.openmesh.org</u>
 - Mesh processing
 - Free, LGPL license
- gmu (gmu-lite)
 - proprietary, directed edges

• Unstructured grids

2D unstructured grid consisting of quads

Source: https://www.sharcnet.ca/Software/Gambit/html/modeling_guide/mg0303.htm

- Hybrid grids
- combination of different grid types

2D hybrid grid

Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf

Grids and Interpolation

Linear, Bilinear, Trilinear Interpolation in Structured Grids Gradients Linear Interpolation in Unstructured Grids

- A grid consists of a finite number of **samples**
 - The continuous signal is known only at a few points (data points)
 - In general, data is needed in between these points
- By **interpolation** we obtain a representation that matches the function at the data points
 - Reconstruction at any other point possible

- Simplest approach: Nearest-Neighbor Interpolation
 - Assign the value of the nearest grid point to the sample.

- Linear Interpolation (in 1D domain)
 - Domain points x, scalar function f(x)

General:

$$f(x) = \frac{x_1 - x_0}{x_1 - x_0} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1) \quad x \in [x_0, x_1]$$

Special Case:

$$f(x) = (1 - x) f(0) + x f(1) \qquad x \in [0, 1]$$

= $[(1 - x) x] \begin{pmatrix} f(0) \\ f(1) \end{pmatrix} = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} f(0) \\ f(1) \end{pmatrix}$

Basis Coefficients

- Linear Interpolation (in 1D domain)
 - Sample values $f_i := f(x_i)$

- C⁰ Continuity (discontinuous first derivative)
 - Use higher order interpolation for smoother transition, e.g., **cubic** interpolation

• Interpolation in 2D, 3D, 4D, ...

Bi-Linear

• Tensor Product Interpolation

• Perform linear / cubic ... interpolation in each x,y,z ... direction **separately**

Interpolation

very important

• Bilinear Interpolation

• Example: Bi-linear interpolation in a 2D cell

• Repeated linear interpolation

$$f_{01} = 0 \qquad f_{(0.5,1) = 0.5} \qquad f_{11} = 1$$

Interpolation

• Trilinear Interpolation

3D, "tri-linear"
$$f(x, y, z) = \sum_{k=0}^{p} \sum_{j=0}^{m} \sum_{i=0}^{n} b_i(x) b_j(y) b_k(z) f_{ijk}$$

"interpolate four times in x direction, twice in y direction, and once in z direction"

• Function Derivative Estimation

- Called **Gradients** for multidimensional functions
- Have a lot of important applications (e.g., normal for volume rendering, critical point classification for vector field topology ...)

$$\nabla f(x, y, z) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} f(x, y, z) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}$$

"vector of partial derivatives"

• Describes direction of steepest ascend

- Two ways to estimate gradients:
 - Direct derivation of interpolation formula
 - Finite differences schemes

• Field Function Derivatives, Bi-Linear

$$f(x,y) = \left[(1-x) \ x \right] \left[\begin{array}{c} f_{00} \ f_{01} \\ f_{10} \ f_{11} \end{array} \right] \left[\begin{array}{c} (1-y) \\ y \end{array} \right] \longrightarrow \begin{array}{c} \text{derive this} \\ \text{interpolation formula} \end{array}$$

$$\frac{\partial f(x,y)}{\partial x} = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} f_{00} & f_{01} \\ f_{10} & f_{11} \end{bmatrix} \begin{bmatrix} (1-y) \\ y \end{bmatrix}$$
 "conditional direction of the second state of the second sta

"constant in x direction"

$$\frac{\partial f(x,y)}{\partial y} = \left[(1-x) x \right] \begin{bmatrix} f_{00} & f_{01} \\ f_{10} & f_{11} \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 "constant in y direction"
$$= (f_{01} - f_{00}) (1-x) + (f_{11} - f_{10}) x$$

 Problem of exact linear function differentiation: discontinuous gradients

- Solution:
 - Use higher order interpolation scheme (cubic)
 - Use finite difference estimation

• Finite Differences Schemes

• Apply Taylor series expansion around samples

• Finite Differences Schemes

$$f(x_{i+1}) = f(x_i) + h \frac{df(x_i)}{dx} + \frac{h^2}{2} \frac{d^2 f(x_i)}{dx^2} + O(h^3)$$
$$f(x_{i-1}) = f(x_i) - h \frac{df(x_i)}{dx} + \frac{h^2}{2} \frac{d^2 f(x_i)}{dx^2} + O(h^3)$$

Difference

$$\longrightarrow \quad (f(x_{i+1}) - f(x_i)) - (f(x_{i-1}) - f(x_i)) = 2h \frac{\mathrm{d}f(x_i)}{\mathrm{d}x} + O(h^3)$$
$$\longrightarrow \quad \frac{\mathrm{d}f(x_i)}{\mathrm{d}x} \approx \frac{f(x_{i+1}) - f(x_{i-1})}{2h} \quad \begin{array}{c} \text{Central} \\ \text{difference} \end{array}$$

• Central differences have higher approximation order than forward / backward differences

• Finite Differences Schemes, Higher order derivatives

$$\frac{\mathrm{d}^2 f(x_i)}{\mathrm{d}x^2} \approx \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2}$$

$$\frac{\partial^2 f(x_i, y_j)}{\partial xy} \approx \frac{f(x_{i+1}, y_{j+1}) - f(x_{i+1}, y_{j-1}) - f(x_{i-1}, y_{j+1}) + f(x_{i-1}, y_{j-1})}{4 h_x h_y}$$

• 1D Example, linear interpolation

• Piecewise Linear Interpolation in Triangle Meshes

• Linear Interpolation in a Triangle

- There is exactly one linear function that satisfies the interpolation constraint
- A linear function can be written as

f(x, y) = a + bx + cy

 Polynomial can be obtained by solving the linear system

$$\begin{bmatrix} 1 & x_0 & y_0 \\ 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \end{bmatrix}$$

- Linear in x and y
 - Interpolated values along any ray in the plane spanned by the triangle are linear along that ray

- Barycentric Coordinates:
 - Planar case: Barycentric combinations of 3 points

$$\mathbf{p} = \alpha \mathbf{p}_1 + \beta \mathbf{p}_2 + \gamma \mathbf{p}_3$$
, with $: \alpha + \beta + \gamma = 1$

 $\gamma = 1 - \alpha - \beta$

• Area formulation:

$$\mathbf{p}_{1}$$

$$\alpha = \frac{area(\Delta(\mathbf{p}_2, \mathbf{p}_3, \mathbf{p}))}{area(\Delta(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3))}, \beta = \frac{area(\Delta(\mathbf{p}_1, \mathbf{p}_3, \mathbf{p}))}{area(\Delta(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3))}, \gamma = \frac{area(\Delta(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}))}{area(\Delta(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3))}$$

- Barycentric Coordinates:
 - Linear formulation:

$$\mathbf{p} = \alpha \mathbf{p}_1 + \beta \mathbf{p}_2 + \gamma \mathbf{p}_3$$

= $\alpha \mathbf{p}_1 + \beta \mathbf{p}_2 + (1 - \alpha - \beta) \mathbf{p}_3$
= $\alpha \mathbf{p}_1 + \beta \mathbf{p}_2 + \mathbf{p}_3 - \alpha \mathbf{p}_3 - \beta \mathbf{p}_3$
= $\mathbf{p}_3 + \alpha (\mathbf{p}_1 - \mathbf{p}_3) + \beta (\mathbf{p}_2 - \mathbf{p}_3)$

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

very important

• Barycentric Interpolation in a Triangle

• The linear function of a triangle can be computed at any point as $f(x,y) = \alpha_0(x,y)f_0 + \alpha_1(x,y)f_1 + \alpha_2(x,y)f_2$

with $\alpha_0 + \alpha_1 + \alpha_2 = 1$ (Barycentric Coordinates)

• This also holds for the coordinate $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ of the triangle: $\mathbf{x} = \alpha_0 \mathbf{x}_0 + \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2$

 \rightarrow Can be used to solve for unknown coefficients α_i :

$$\begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

 \mathbf{X}_2

• Barycentric Interpolation in a Triangle

Solution of

$$\begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 (e.g. Cramer's rule):

with $A = \frac{1}{2} \det \left(\begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix} \right)$

Inside triangle criteria $0 \leq \alpha_0, \alpha_1, \alpha_2 \leq 1$

- Barycentric Interpolation in a Tetrahedron
- Analogous to the triangle case

Gradient of a linearly interpolated function in a triangle/tetrahedron

• Constant!

