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Next Tuesday

e No lecture next Tuesday!
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Grids and Interpolation

Structured Grids
Unstructured Grids



Digital Data
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Scientific Data
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Data Representation

independent dependent
variables variables
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Data Representation

e |n most cases, the visualization data represent a
continuous real object, e.g., an oscillating membrane, a
velocity field around a body, an organ, human tissue, etc.

e This object lives in an n-dimensional space - the domain

e Usually, the data is only given at a finite set of locations, or
samples, in space and/or time

e Remember imaging processes like numerical simulation and CT-
scanning, note similarity to pixel images

e We call this a discrete structure, or a discrete
representation of a continuous object
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Data Representation

e Discrete representations

e We usually deal with the reconstruction of a continuous real object
from a given discrete representation

e Discrete structures consist of point samples

e Often, we build grids/meshes that connect neighboring
samples
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Data Representation
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Data Representation

e Grid terminology

OD: grid vertex \J> (5 J\
(grid point)
. —>
1D: grid line = a i
\ G/
2D: grid face
—O O O O
3D: grid voxel

N

7\
/.

grid vertices
grid lines
grid faces

|

|

5

grid cell: largest-dimensional
element in a grid

2D: grid face

3D: grid voxel
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Data Connectivity

There are different types of grids:

Structured grids
connectivity is implicitly given.
e Block-structured grids
combination of several structured grids

Unstructured grids
connectivity is explicitly given.

Hybrid grids
combination of different grid types
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Grids

Structured grids

e “Structured” refers to the implicitly given connectivity
between the grid vertices

e We distinguish different types of structured grids regarding
the implicitly or explicitly given coordinate positions of the

grid vertices

uniform grid rectilinear grid curvilinear grid
implicitly given coordinates semi-implicitly given coordinates explicitly given coordinates
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Structured grids

e Number of grid vertices: D,, D, D,

Grids and Interpolation

e We can address every grid vertex with an index tuple (i, |, k)

o 0<i<D, 0<j<D,
(L,)) = (2,3) (&,)) = (2,3)
/ ]
ll '
A A [
D, !;1 D, i
:" |
¢ N
> D, > D,
uniform grid rectilinear grid
implicitly given coordinates semi-implicitly given coordinates
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explicitly given coordinates



Grids and Interpolation

Structured grids
e Number of grid vertices: D,, D, D,

e We can address every grid cell with an index tuple (i, J, k)
e 0<i<D,—1 0<j<D,—1 0<k<D,-1

e > Number of cells: (D, — 1) x (D, — 1) x (D, — 1)

A A
Dy Dy
e Wy
RS b\ D
p. .-
> D, > D, Dy
uniform grid rectilinear grid curvilinear grid
implicitly given coordinates semi-implicitly given coordinates explicitly given coordinates
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Grids and Interpolation

very important

e Regular or uniform grids

e Cells are rectangles or rectangular cuboids of the same
size

e All grid lines are parallel to the axes

LF Fa—
—
F

I + '
| V—— —
AT T

e To define a uniform grid, we need the following:

o Bounding box: (Xmin’ Ymin: Zmin) - (Xmax1 Ymax Zmax)
e Number of grid vertices in each dimension: D,, D,, D,
e > Cell size: d,, d,, d,
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Grids and Interpolation

e Regular or uniform grids
e Well suited for image data (medical applications)

e Coordinate =>» cell is very simple and cheap
e Global search is good enough; local search not required

e Coordinate of a grid vertex:

(i-dy,j-dy k-d.)
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Grids and Interpolation

e Cartesian grid
e Special case of a uniform grid: d,, = d,, = d,

e Consists of squares (2D), cubes (3D)
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Grids and Interpolation

e Rectilinear grids

e Cells are rectangles of different sizes

e All grid lines are parallel to the axes

e Vertex locations are inferred from positions of grid lines for
each dimension:

e XLoc ={0.0,1.5,2.0,5.0, ...}

e YLoc={-1.0,0.3,1.0,2.0,...)

e ZLoc ={3.0,3.5,3.6,4.1,...)

e Coordinate =>» cell still quite simple

VLIS

LIRS A
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Grids and Interpolation

e Curvilinear grids

e Vertex locations are explicitly given
e XYZLoc ={(0.0, -1.0, 3.0), (1.5, 0.3, 3.5), (2.0, 1.0, 3.6), ...}

e Cells are quadrilaterals or cuboids

e Grid lines are not (necessarily) parallel to the axes

2D curvilinear grid

3D curvilinear grids
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Grids and Interpolation

e Curvilinear grids

e Coordinate =>» cell:
e Local search within last cell or its immediate neighbors
e Global search via quadtree/octree

2D curvilinear grid

3D curvilinear grids
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Grids and Interpolation

e Block-structured grids

e combination of several structured grids

DFG-funded SFB 557
Erik Wassen, TU Berlin, Germany 2008
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Visualization Scenarios

e Demands on data storage, an example:

Ahmed body

Block-structured grid with 52 blocks
Each block is a curvilinear grid

17 million grid cells in total

Temporal resolution: a particle
needs 10000 time steps from front
to back of the Ahmed body DFG-funded SFB 557

Erik Wassen, TU Berlin, Germany 2008
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Visualization Scenarios

e Demands on data storage, an example:

17 million grid cells

X
X
X

(
7

10000 time steps

7 variables

8 bytes per double
8.66 terra bytes

60.62 TB for total

0000 ti t ' '
ipe steps) DFG-funded SFB 557

Erik Wassen, TU Berlin, Germany 2008

=>» Do not save every time step, not every variable, and not every block.
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Grids and Interpolation

e Unstructured grids

2D unstructured grid 3D unstructured grid
consisting of triangles consisting of tetrahedra
(from TetGen user manual)
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Grids and Interpolation

e Unstructured grids

e Vertex locations and connectivity
explicitly given

e Linear interpolation within a
triangle/tetrahedron using
barycentric coordinates

e Coordinate =» triangle/tetra:

e Local search within last
triangle/tetra or its immediate
neighbors

e Global search via
guadtree/octree

3D unstructured grid
consisting of tetrahedra
(from TetGen user manual)
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Grids and Interpolation

How to store unstructured grids? Different requirements:

e Efficient storage
e Dbytes per face / bytes per vertex

e Efficient access
e of face / vertex properties (e.g., position)

e Efficient traversal
e e.g., neighboring face, 1-ring of a vertex,...

e Requirements are competing
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Face set

e Store faces
e 3 positions

e N0 connectivity
(“match positions™)

e Example: STL

e Vvery simple structure
(too simple, unpractical!)

e casily portable

Grids and Interpolation

Triangles

X11 Y11 Zi1 | X12 Y12 Zi2 | X13 Yi3 Zi3

X21 Y21 Z21 | X22 Y22 Z22 | X23 Y23 Z23

Xr1 YF1 Zr1 | XF2 YF2 Zr2 | XF3 YF3 ZF3

36 B/f =72 BN
no connectivity!
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Grids and Interpolation

Shared vertex

e vertex table stores
positions Vertices

Triangles

X1 Y1 22 Vi1 Viz Vi3

e triangle table stores
Indices into vertices

Xv Yv Zy

e NO explicit connectivity

e Examples: OFF, OBJ, PLY
e Quite simple and efficient

e Enables efficient operations 12 BN + 12 B/f = 36 B/V
on static meshes _ _
no neighborhood info

VF1 Vr2 VF3
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Grids and Interpolation

Face-based connectivity

e vertices store
e position
e face reference

e faces store
e 3 vertex references

e referencesto 3
neighboring faces

4
o, &
.
i
¥
R

64 B/v

no edges!
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Grids and Interpolation

Edge-based connectivity

e vertex stores
e position
e reference to 1 edge

e edge stores references to
e 2 vertices
e 2 faces
e 4 edges

e face stores 120 B/v

e reference to 1 edge . :
J edge orientation?
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Half-edge based connectivity

e vertex stores
e position
e reference to 1 half-edge

e half-edge stored references to
e 1 vertex
e 1 face
e 1,2, or 3 half-edges

e face stores
e reference to 1 half-edge
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Halfedge based connectivity

96 to 144 B/v

no case distinctions
during traversal



Grids and Interpolation

e Half-edge based connectivity

to_vertex
—» next_halfedge
’ j —» oOpposite_halfedge
B . — o—» face
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Grids and Interpolation

Half-edge based connectivity: Traversal

e Building blocks

Vertex to (outgoing) halfedge
half-edge to next (previous) halfedge
half-edge to neighboring half-edge
half-edge to face

half-edge to start (end) vertex

e Example: Traverse around vertex (1-ring)
e enumerate vertices/faces/half-edges
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1-ring traversal

e Start at vertex

'
/

O&
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1-ring traversal

e Start at vertex

e Outgoing halfedge
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1-ring traversal

e Start at vertex
e Outgoing halfedge
e Opposite halfedge

O«
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1-ring traversal

e Start at vertex
e Outgoing halfedge
e Opposite halfedge

e Next half-egde
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1-ring traversal

e Start at vertex
e Outgoing halfedge
e Opposite halfedge

e Next half-egde ) / O\
e Opposite ... \\ / 1

< 7
/5
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e Start at vertex
e Outgoing halfedge
e Opposite halfedge

e Next half-egde / O\.

o o

e Opposite ... \ /‘H
e Next ... /O

° .. - \N,

+— _;O
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Half-edge based libraries

e CGAL
e Www.cgal.org
e Computational geometry
e Free for non-commercial use

e Open Mesh
e Www.openmesh.org
e Mesh processing
e Free, LGPL license

e gmu (gmu-lite)
e proprietary, directed edges
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Grids and Interpolation

e Unstructured grids

2D unstructured grid
consisting of quads

Source: https://www.sharcnet.ca/Software/Gambit/html/modeling_guide/mg0303.htm
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Grids and Interpolation

e Hybrid grids

e combination of different grid types

ANV DAV, i
NN A
gr ﬂihm

2D hybrid grid
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Grids and Interpolation

Linear, Bilinear, Trilinear Interpolation in Structured Grids

Gradients
Linear Interpolation in Unstructured Grids



Interpolation

e A grid consists of a finite number of samples
e The continuous signal is known only at a few points (data points)
e In general, data is needed in between these points

e By interpolation we obtain a representation that matches
the function at the data points
e Reconstruction at any other point possible
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Interpolation

e Simplest approach: Nearest-Neighbor Interpolation
e Assign the value of the nearest grid point to the sample.

O
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e Linear Interpolation (in 1D domain)
e Domain points X, scalar function f ()

General:
flo) = 222 f(z) + 2220 f(21) @ € [20, 1]

Special Case:

flz) = (1—=) f0) += f(1) z € [0,1]
- () - 1 6

Basis Coefficients

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015
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Interpolation

e Linear Interpolation (in 1D domain)
e Sample values f; := f(x;)

Js
fi /2 20
""""" T f3 Je6
I T -~ f1
Lo X1 0y, X3 L4 X5 Ie

e (' Continuity (discontinuous first derivative)

e Use higher order interpolation for smoother transition, e.g.,
cubic interpolation
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Interpolation

e Interpolation in 2D, 3D, 4D,

Bi-Linear Bi-Cubic

e Tensor Product Interpolation

e Perform linear / cubic ... interpolation in each x,y,z ... direction
separately

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015



e Bilinear Interpolation

Interpolation

very important

20, bilinear Fla,y) =(1 = 2) (1 - y) foo + 2 (1 = y) fro+
(1—-2)y for +xy f11
for .f(x’ D S
=(1—y) (1 —z) foo + = f10)+
y (1 —x) for + f11)
“interpolate twice in x direction
f(:z:, y) and then once in y direction”
foo .f(m, 0) f10
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Grids and Interpolation

e Example: Bi-linear interpolation in a 2D cell

e Repeated linear interpolation

fo1 =0 £(0.5,1) = 0.5

® 7(0.5,0.75) = 0.75

£(0.5,0.75) =?

(1—0.75)

foo=1 £(0.5,0) = 1.5

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015
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Interpolation

e Trilinear Interpolation

3D, “tri-linear” (z,y, 2 T Y 7 b ( bi(2) fiin

k=0 7=0 2=0

four S

001 0/ . o
f o1 “interpolate four times in x
® direction, twice in y direction, and
f(x Y z) once in z direction”
7 ?

fo10 /. f110

<

Jooo J100
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Function Derivatives

e Function Derivative Estimation
e Called Gradients for multidimensional functions

e Have a lot of important applications (e.g., normal for volume
rendering, critical point classification for vector field topology ...)

i B
% i “vector of parti
N _ | of partial
Vf(:c, Y, Z) — 8(%; f(:U, Y Z) o g% derivatives”
0z 0z
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Function Derivatives

e Two ways to estimate gradients:
e Direct derivation of interpolation formula
e Finite differences schemes
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Field Function Derivatives

e Field Function Derivatives, Bi-Linear

flz,y) =[0-2)z] Hfl’g ;f;ﬂ [(1—y)] —y derive this

Y interpolation formula
of (x,y) T
Or — [_1 1] H?g ?;21] [uyy)] “constant in x
direction®
= (f10 — foo) (1 —y) + (f11 — for) ¥
8f($,y):[(l_$)$][foo f01] [—1] _
Oy fio fi1 1 “constant in y
direction®

= (for — foo) (1 —z) + (fi1 — fio) =
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Field Function Derivatives

e Problem of exact linear function differentiation:

discontinuous gradients

(Piecewise) linear function ------- Gradient "
B O
- '@
. Q.
o
N

Lo L1 L2 L3 L4 L5 L6

e Solution:

e Use higher order interpolation scheme (cubic)
e Use finite difference estimation
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Finite Differences

e Finite Differences Schemes
e Apply Taylor series expansion around samples

Continuous Linear

function Fa) function

f(ziv1)  Taylor expansion

/ 2 32
f(:ljz + h) = f(l’z) +h dfd(;CZ) + ]12 d ({w(gjz) + O(h?’)

df(zi) _ f(wiy1) — f(zy)  Forward

- 4 5 difference
, 4f(z)  flz)— f(wi) Backward
de h difference
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Finite Differences

e Finite Differences Schemes

dz * 2 da?

f(xig1) = f(z:) +h +O(h?)

dx 2 dx? + O(hS)

f(xi1) = f(zi) = R
Difference
—>  (f(@it1) = f(z:)) — (f(zi-1) = f(mi)) = 2h

—  df(z;) _ f(ziy1) — f(zi—1) Central
de 2h difference

df(z;)
dx

+ O(h?)

e Central differences have higher approximation order than
forward / backward differences
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Finite Differences

e Finite Differences Schemes, Higher order derivatives

d® f () - S(@ip1) = 2f(x;) + f(wi1)
dx? h?

aZf(CCi)yj) ~ f(a:'i—l—la yj+1) — f($i+1a yj—l) — f(%—hyjﬂ) + f(fliz'—la ?Jj—l)
oxy 4 hy hy

e 1D Example, linear interpolation

(Piecewise) linear function ------- Central
differences ‘
B O
- ) \.\\
e
Lo I1 L3
h
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Interpolation in Triangles

e Piecewise Linear Interpolation in Triangle Meshes
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Interpolation in Triangles

e Linear Interpolation in a Triangle

e There is exactly one linear function that
satisfies the interpolation constraint

. . . f2
e A linear function can be written as
flz,y) =a+bx+cy
e Polynomial can be obtained by

solving the linear system

S R fo A fi
0o Yo| |a Jo

1Lz | |0 = | /1

1z yo] |cf | f2]

e Linearinxz and vy

e Interpolated values along any ray in the plane spanned by the
triangle are linear along that ray
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Barycentric Coordinates

e Barycentric Coordinates:

e Planar case:
Barycentric combinations of 3 points

P=ap,+ P, +ypPsWith:a+p+y=1
y=l-a-p

e Area formulation:

o = 2reAAR,P3P)) 5 area(A(Py,PsP)) | area(A(p;,Py,p))
area(A(py,p,:Ps)) ©  area(A(p.,p,,ps)) T area(A(p;,p,ps))
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Barycentric Coordinates

e Barycentric Coordinates:
e Linear formulation:

p=ap,+/P,+7P;
=ap; + 4p, +(1-a - B)p;
=ap,+ P, +Ps—aPs— FPs
=ps +a(p, -p;)+ 5P, - p;)
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P=ap,+ P, +yPs,With: o+ +y=1

P,

P, P

p P,

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015
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Barycentric Coordinates



Barycentric Interpolation

e Barycentric Interpolation in a Triangle | very important

e The linear function of a triangle can be computed at any point as
f(:]?, y) — Oéo(ZC, y)fO + 041(217, y)fl + 042(33, y)fQ

with ag 4+ a1 + as = 1 (Barycentric Coordinates)

e This also holds for the coordinate x = (;) of the triangle:

X:(]{0X0—|—(11X1—|—052X2

— Can be used to solve for unknown coefficients «; :

g L1 T2 87y i

Yo Y1 Y2 a1 | =
1 1 1 Q9

—

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015



Barycentric Interpolation

e Barycentric Interpolation in a Triangle

Lo L1 X2 Qo

e Solution of Yo Y1 Y2 || =
1 1 1 (o

- N 2
. (33 T1 T2 ) _ Area([x,x1,X2))

o) = — det o = Area([XO; X]_,XQ])

(e.g. Cramer's rule):

—_ L 8

. . Tog T T2 Area([xq, x, X2])
J— a -
o et %o ?{ Y2 "7 Area([xo, x1,X2])

= 1 1 -
vo oo Area([xo, 1. %))
1 rea([Xo, X1,
- — X
2= 2A det ( ”ylo yll ‘7{ ) a2 Area([xo, X1, X2]) "
! i X1
with
1 To T T . . L
A=gdet| |y w Inside triangle criteria
111 0 <ag, a1, a2 <1
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Barycentric Interpolation

e Barycentric Interpolation in a Tetrahedron

e Analogous to the triangle case
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Barycentric Interpolation

Gradient of a linearly interpolated function in a
triangle/tetrahedron

e Constant!

fo

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015



