Exercises 3 Logic Design

Computer Organization and Components / Datorteknik och komponenter (IS1500), 9 hp Computer Hardware Engineering / Datorteknik, grundkurs (IS1200), 7.5 hp

KTH Royal Institute of Technology

Friday 2nd October, 2015

Gates and Boolean Algebra

- 1. Draw the symbols and write out the truth tables for the following logic gates: AND, OR, NOT, NAND, NOR, XOR
- 2. Consider the circuit below:

- (a) Create the truth table for the circuit.
- (b) Write down the corresponding boolean algebra expression.
- (c) Simplify the circuit. Explain which boolean algebra theorems that are used.
- 3. The following circuit includes a tristate buffer:

- (a) Create the truth table for the circuit
- (b) Explain what the tristate buffer is doing and what the output from the buffer means.

4. Consider the following truth table.

S	Α	В	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- (a) Create the corresponding boolean expression in sum-of-products form.
- (b) Simplify the expression using the boolean theorems presented at Lecture 7. Clearly state which theorems that you are using.
- (c) Draw the final circuit in a simple form, that is, reuse as many gates as possible.

Multiplexers, Decoders, and Adders

- 5. The following tasks concerns a 2:1 multiplexer.
 - (a) Draw the symbol for the multiplexer.
 - (b) Create the truth table in a short form, where the "don't care" symbol "?" is used as often as possible.
 - (c) Draw a circuit that gives the same meaning as the above 2:1 multiplexer. The circuit should consist of exactly 2 AND-gates, 1 OR-gate, and 1 NOT-gate.
 - (d) How does this circuit compare to the solution of exercise 4c.
- 6. Decoders.
 - (a) Draw a figure for a 3:8 decoder.
 - (b) Write out the truth table for a 2:4 decoder.
 - (c) Explain the meaning of the numbers that determine the size of the two encoders 3:8 and 2:4.
 - (d) Create a circuit consisting of AND-gates, OR-gates, and NOT-gates that defines a 2:4 decoder.
- 7. Assume that you want to create a 4:1 multiplex where the data input/output ports have 8-bit bus width. Draw the multiplexer. Note that you must clearly show the bus width of the wires.
- 8. Construct a circuit that takes a 6-bit input A and outputs a 6-bit signal Y, where the output is A multiplied by value 3. You should use 1-bit full adders and basic gates.

9. Construct a 4-bit equality comparator that checks that two input signals A and B are equal, that is, that each corresponding bit has the same value.

Latches, Flip-Flops, Registers, and Register Files

10. The following figure shows a SR latch.

Construct the truth table for the SR latch, by considering each possible input. Explain how and why the signals stabalize for each possible input.

- 11. D Flip-Flops
 - (a) Draw the symbol for a D Flip-Flop with enable signal.
 - (b) Explain what the D Flip-Flop above means and in what way it is different from SR latches and D latches.
 - (c) Consider the clock signals below. Assume that the D Flip-flop is activated on the rising edge. Draw the output signal Q. Assume that Q is 0 at the beginning of the example sequence.

12. Consider the following circuit where the register is triggered on the rising clock edge.

- (a) Assume that register R1 holds value 0×3 , register R2 value 0×5 , A = 3, B = 0, and C = 0. Show the signal values for signals Y_1 and Y_2 for the first 3 clock cycles.
- (b) Assume that register R1 holds value 0×10 , register R2 value 0×8 , A = 2, B = 255, and C = 1. Show the signal values for signals Y_1 and Y_2 for the first 3 clock cycles.
- 13. Consider the following register file. Assume that N = 4 and M = 16.

- (a) What is the difference between a register file and a register?
- (b) How many ports has the above the register file got? How many input ports and how many output ports?
- (c) What is the total number of bits of data that this register file can store?
- (d) Assume the following mapping from addresses to memory values {0x3 → 0x3f, 0xa → 0x22, 0x9 → 0xe7} is a known state of the register file. Assume further that A₁ = 0xa, A₂ = 0x9, A₃ = 0x3, WD₃ = 0x53, and WE₃ = 0x1. What are then the values for RD₁ and RD₂ and what is the new known state of the register file?