EP2210 Fairness

- Lecture material:
 - Bertsekas, Gallager, Data networks, 6.5
 - L. Massoulie, J. Roberts, "Bandwidth sharing: objectives and algorithms," IEEE Infocom 2000, Sec. II.B.1, III.C.3.
 - J-Y Le Boudec, "Rate adaptation, congestion control and fairness: a tutorial," Nov. 2005, 1.2.1, 1.4.
 - MIT OpenCourseWare, 6.829
- Reading for next lecture:
 - L. Massoulie, J. Roberts, "Bandwidth sharing: objectives and algorithms," IEEE Infocom 2000.

Control functions in communication networks fairness concept

Fairness

- Scheduling: means to achieve fairness on a single link
 - E.g., GPS provides max-min fairness
- Networks?
 - How to define fairness
 - How to achieve fairness

Fairness - objectives

 How to share the network resources among the competing flows? ("parking lot scenario")

Fairness - objectives and algorithms

- Step 1: what is the "optimal" share?
 - What is optimal a design decision
 - Fairness definitions
 - Centralized algorithms to calculate fair shares
- Step 2: how to ensure fair shares?
 - Traffic control at the network edges (congestion or rate control)
 - Scheduling at the network nodes
- This lecture:
 - max-min fairness definition and allocation algorithm
 - proportional fairness, other fairness definitions
- Student presentation:
 - distributed control for fairness

- Simplest case:
 - without requirements on minimum or maximum rate
 - constraints are the link bandwidths
- Definition: Maximize the allocation for the most poorly treated sessions, i.e., *maximize the minimum*.
- Equivalent definition: allocation is max-min fair if no rates can be increased without decreasing an already smaller rate

- Formal description:
 - allocated rate for session p: r_p, r = {r_p} (maximum and minimum rate requirements not considered)
 - allocated flow on link a: $F_a = \sum_{p \in a} r_p$
 - capacity of link a: C_a

Feasible allocation r: $r_p \ge 0$, $F_a \le C_a$

Max-min fair allocation r:

- consider \mathbf{r} max-min fair allocation and \mathbf{r}^* any feasible allocation
- for any feasible r*≠r for which r*_p>r_p
 (if in r* there is a session that gets higher rate)
- there is a p' with $r_{p'} \le r_p$ and $r_{p'}^* < r_{p'}$ (then there is a session that has smaller rate in **r** and has even smaller rate in **r***.)

- Simple algorithm to compute max-min fair rate vector r
 - Idea: filling procedure
 - increase rates for all sessions until one link gets saturated (the link with highest number of sessions if there are no max. rates)
 - consider only sessions not crossing saturated links, go back to 1
 - Formal algorithm in B-G p.527
 - Note, it is a centralized algorithm, it requires information about all sessions.

Filling procedure:

- increase rates for all sessions until one link gets saturated (the link with highest number of sessions if there are no max. rates)
- 2. consider only sessions not crossing saturated links, go back to 1

- Can we evaluate whether an allocation is max-min fair?
- Proposition: Allocation is max-min fair if and only if each session has a bottleneck link
- Def: *a* is a bottleneck link for p if $F_a = C_a$ and $r_p \ge r_{p'}$ for all $p' \ne p$
- Find the bottleneck links for p1,p2,p3,p4,p5.

r2=r3=r5=1/3, r1=2/3, r4=1

* : bottleneck link

- Proposition: Allocation is max-min fair *if and only if* each session has a bottleneck link
- 1. If **r** is max-min fair then each session has a bottleneck link
- 2. If each session has a bottleneck link then \mathbf{r} is max-min fair

 Why do we like this proposition: given allocation r it is easy to check if a session has a bottleneck link or not, and this way we can see if r is max-min fair or not.

Proof:

1. If **r** is max-min fair then each session has a bottleneck link Def: *a* is a bottleneck link for p if $F_a=C_a$ and $r_p\ge r_{p'}$ for all p' \neq p

Proof with contradiction: assume max-min, but p does not have bottleneck link (for each link one of these holds: $r_p < r_{p'}$ or $F_a < C_a$).

- For all link *a* on the path, define σ_a :
- if $F_a=C_a,$ then there is at least one session with rate r_{pa} higher than $r_{p},$ and let σ_a = $r_{pa}\text{-}r_p$ and
- if $F_a < C_a$, then the link is not saturated, and let $\sigma_a = C_a F_{a.}$
- Possible to increase r_p with min(σ_a) without decreasing rates lower than r_p . This contradicts the max-min fairness definition.

Proof:

 If each session has a bottleneck link then r is max-min fair Proof: consider the following for each session.

- Consider session p with bottleneck link a ($F_a = C_a$)
- Due to the definition of bottleneck link $r_{pa} \le r_p$, r_p can not be increased without decreasing a session with lower rate.
- This is true for all sessions, thus the allocation is max-min fair.

Other fairness definitions - Utility function

- Utility function: to describe the value of a resource, then e.g. maximize the sum of the utilities.
- E.g.,
 - Application requires fixed rate: r*
 - Allocated rate: r
 - Utility of allocated rate: u(r)=0 if r<r* u(r)=1 if r>=r*
- Typical utility functions:
 - Linear u(r)=r
 - Logarithmic u(r) = log r -> will lead to rate-proportional fairness
 - Step function as above

Rate-proportional fairness

- Name: rate proportional or proportional fairness
- Note! Change in notation! Rate: λ, flow: r, set of flows: R
- Def1: Allocation $\Lambda = \{\lambda_r\}$ is proportionally fair if for any $\Lambda' = \{\lambda'_r\}$:

$$\sum_{R} \frac{\lambda_r - \lambda_r}{\lambda_r} \le 0$$

- thus, for all other allocation the sum of *proportional rate* changes with respect to Λ are negative.
- Def2: The proportionally far allocation maximizes $\Sigma_R \log \lambda_r \max initial maximizes$ the overall utility of rate allocations with a *logarithmic utility function*.

Rate-proportional fairness

- Example: parking lot scneario
- L links, R₀ crosses all links, others only one link

 $\begin{aligned} \text{Maximize } \sum_{i=0}^{L} \log \lambda_i \\ \sum_{i=0}^{L} \log \lambda_i &= \log \lambda_0 + \sum_{i=1}^{L} \log \lambda_i = \log \lambda_0 + L \log(1 - \lambda_0) \\ &\frac{\partial}{\partial \lambda_0} \left(\log \lambda_0 + L \log(1 - \lambda_0) \right) = 0 \\ &\Rightarrow \quad \frac{1}{\lambda_0} - \frac{L}{1 - \lambda_0} = 0 \\ &\lambda_0 &= \frac{1}{1 + L}, \quad \lambda_i = \frac{L}{1 + L} \end{aligned}$

Rate-proportional fairness

Maximize $\sum_{i=0}^{L} \log \lambda_i$

$$\sum_{i=0}^{L} \log \lambda_i = \log \lambda_0 + \sum_{i=1}^{L} \log \lambda_i = \log \lambda_0 + L \log(1 - \lambda_0)$$
$$\frac{\partial}{\partial \lambda_0} \left(\log \lambda_0 + L \log(1 - \lambda_0) \right) = 0$$
$$\Rightarrow \quad \frac{1}{\lambda_0} - \frac{L}{1 - \lambda_0} = 0$$
$$\lambda_0 = \frac{1}{1 + L}, \quad \lambda_i = \frac{L}{1 + L}$$

- Long routes are penalized
- The same as the "equal resources" scenario on the first slides.

Rate-proportional fairness – equivalence of definitions

- Let $\{\lambda_i^*\}$ be the optimal rate allocation and an other $\{\lambda_i'\}$ allocation.

Let $\lambda'_i = \lambda^*_i + \Delta_i$

$$\begin{split} \sum_{i=0}^{L} \log \lambda'_{i} &= \sum_{i=0}^{L} \log \left(\lambda_{i}^{*} + \Delta_{i}\right) \\ &= \sum_{i=0}^{L} \log \lambda_{i}^{*} + \sum_{i=0}^{L} \frac{\Delta_{i}}{\lambda_{i}^{*}} + o(\Delta^{2}) \\ \sum_{i=0}^{L} \log \lambda'_{i} &\approx \sum_{i=0}^{L} \log \lambda_{i}^{*} + \sum_{i=0}^{L} \frac{\Delta_{i}}{\lambda_{i}^{*}} \implies \sum_{i=0}^{L} \frac{\Delta_{i}}{\lambda_{i}^{*}} \leq 0 \\ &\Leftrightarrow \sum_{i=0}^{L} \frac{\lambda'_{i} - \lambda_{i}^{*}}{\lambda_{i}^{*}} \leq 0. \end{split}$$

Other bandwidth sharing objectives – home reading

- L. Massoulie, J. Roberts, "Bandwidth sharing: objectives and algorithms," IEEE Infocom 2000, sections I and II.
- Student presentation: section III.C on distributed control for fairness
- Max-min
- Proportional
- Potential delay minimization
- Weighted shares for various fairness definitions