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EP2210 
Scheduling 

• Lecture material: 
– Bertsekas, Gallager, 6.1.2. 

– MIT OpenCourseWare, 6.829 

– A. Parekh, R. Gallager, “A generalized Processor Sharing Approach to Flow Control 
- The Single Node Case,” IEEE Infocom 1992 
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Scheduling - Problem definition 

• Scheduling happens at the routers (switches) – or at user nodes if there are 
many simultaneous connections 

– many flows transmitted simultaneously at an output link 

– packets waiting for transmission are buffered 

• Question: which packet to send, and when? 

 

• Simplest case: FIFO 

– packets of all flows stored in the same buffer in arrival order 

– first packet in the buffer transmitted when the previous transmission is complete 

– packet transmission in the order of packet arrival 

– packet arriving when buffer is full dropped 

 

• Complex cases: separate queues for flows (or set of flows) 

– one of the first packets in the queues transmitted 

– according to some policy 

– needs separate queues and policy specific variable for each flow 

• PER FLOW STATE  
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Scheduling - Requirements 

• Easy implementation 

– has to operate on a per packet basis at high speed routers 

• Fair bandwidth allocation  

– for elastic (or best effort) traffic 

– all competing flows receive the some “fair” amount of resources 

• Provide performance guarantees for flows or aggregates 

– service provisioning in the Internet (guaranteed service per flow) 

– guaranteed bandwidth for SLA, MPLS, VPN (guaranteed service for 
aggregates) 

– integrated services in mobile networks (UMTS, 4G) 

• Performance metrics 

– throughput, delay, delay variation (jutter), packet loss probability 

– performance guarantees should be de-coupled 
(coupled e.g., high throughput -> low delay variation) 
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Scheduling – Implementation issues 

• Scheduling discipline has to make a decision before each packet 
transmission – every few microseconds 

• Decision complexity should increase slower than linearly with the 
number of flows scheduled 

– e.g., complexity of FIFO is 1 

– scheduling where all flows have to be compared scales  linearly 

• Information to be stored and managed should scale with the 
number of flows 

– e.g., with per flow state requirement it scales  linearly (e.g., queue 
length or packet arrival time) 

 

• Scheduling disciplines make different trade-off among the 
requirements on fairness, performance provisioning and complexity 

– e.g., FIFO has low complexity, but can not provide fair bandwidth share 
for flows 
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Scheduling classes 
• Work-conserving 

– server (output link) is never idle when there is packet waiting 

time 

output 

input 1 

input 2 

– utilizes output bandwidth efficiently 

– burstiness of flows may increase  loss probability at the network 
nodes on the transmission path increases 

– latency variations at each switch  may disturb delay sensitive traffic 
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time 

output 

input 1 

input 2 
d 

Scheduling classes 
• Nonwork-conserving 

– add rate control for each flow  

– each packet assigned an eligibility time when it can be transmitted 
• e.g, based on minimum d gap between packets 

– server can be idle if no packet is eligible 

– burstiness and delay variations are controlled 

– some bandwidth is lost 

– can be useful for transmission with service guarantees 

server idle, while packet  

waiting from input 2  
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Scheduling for fairness 

• The goal is to share the bandwidth among the flows in a “fair” 
way 

– fairness can be defined a number of ways (see lectures later) 

– here fairness is considered for one single link, not for the whole 
transmission path 

 

• Max-min fairness 

– Maximize the minimum bandwidth provided to any flow not receiving 
all bandwidth it requests 

– E.g.: no maximum requirement, single node – the flows should 
receive the same bandwidth 

– Specific cases: weighted flows and maximum requirements 
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Max-min fairness 
• Maximize the minimum bandwidth provided to any flow not 

receiving all bandwidth it requests  

 
C: link capacity 

B(t): set of flows with data to transmit at time t 

 (backlogged (saturated) flows) 

n(t): number of backlogged flows at time t 

Ci(t): bandwidth received by flow i at time t 

 

Case: without weights or  
max. requirements 

 

Case: weights 

wi: relative weight of flow i 

 

Case: max. requirements 

ri: max. bandwidth requirement for flow i 

(t): fair share at time t 
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Max-min fairness 

• Calculate fair shares: 

– 3 backlogged (saturated) flows, equal weights, link capacity 10. 

– 3 backlogged flows, weights 1,2,2 link capacity 10 

– 4 backlogged  flows, max requirements: 2, 3, 4, 5, link capacity 11. 

– 3 backlogged flows, rate requirements: 2,4,5, the link capacity is 11. 
What are the fair shares now? 

 

C: link capacity 

B(t): set of backlogged flows at time t 

Ci(t): bandwidth received by flow i at time t 

Case: weights 

wi: relative weight of flow I 

 

Case: max. requirements 

ri: max. bandwidth requirement for flow I 

(t): fair share at time t 

 Ctrt

trtC

C
w

w
tC

tBj

j

ii

tBj

j

i
i















))(,min(:)(

))(min()(

)(

)(

,

)(







11 

Fair queuing-for max-min fairness 
• Fluid approximation 

– fluid fair queuing (FFQ) or generalized processor sharing (GPS) 

– idealized policy to split bandwidth 

– assumption: dedicated buffer per flow 

– assumption: flows from backlogged queues served simultaneously 
(like fluid) 

– not implementable, used to evaluate real approaches 

– used for performance analysis if per packet performance is not 
interesting 

C 

t 

1 time unit 
fluid left to transmit (backlog) 

3 5 6 
physical or logical queues 

g=1/3 

g=1/2 

g=1 

time 
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Packet-level Fair queuing 
• How to realize GPS/FFQ? 

• Bit-by-bit fair queuing 
– one bit from each backlogged queue in rounds (round robin) – still 

not possible to implement 

• Packet-level fair queuing 

– one packet from each backlogged queue in rounds ??? 

Flows with large packets 
get more bandwidth! 

More sophisticated schemes 
required! 

rounds 
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Packetized GPS (PGPS) 

• How to realize GPS/FFQ? 

• Try to mimic GPS 

• Transmit packets that would arrive earliest with GPS 
– Finishing time (F(p)) 

• Quantify the difference between GPS and PGPS 

 

 

GPS 

PGPS 

F(1)          F(2) 
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Fair queuing – group work 

• Packet-by-packet GPS (PGPS)  

 

• Compare GPS (fluid) and PGPS (packetized) in the following 
scenarios – draw diagrams “backlogged traffic per flow vs. time”.  

 

• Consider one packet  in each queue. C=1 unit/sec 

 

1. Two flows, equal size packets, same weight, L1=L2=1 unit 

2. Two flows, different size packets, same weight L1=1, L2=2 units 

3. Two flows, same packet size, different weight,  
L1=L2=1 unit, w1=1, w2=2 
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Fair queuing – group work 

• Compare GPS (fluid) and PGPS (packetized) in the following scenarios – 
draw diagrams “backlogged traffic per flow vs. time”.  

• Consider one packet  in each queue. C=1 unit/sec 

1. Two flows, equal size packets, same weight, L1=L2=1 unit 

2. Two flows, different size packets, same weight L1=1, L2=2 units 

3. Two flows, same packet size, different weight,  
L1=L2=1 unit, w1=1, w2=2 

time 
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Scheduling summary 

• Scheduling: 

• At the network nodes and at the edge 

• To provide quality guarantees or fairness 

• Work-conserving and non-work-conserving 

 

• Max-min fairness in a single link, with weights and max. rate requirement 

 

• GPS for max-min fairness in a fluid model 

 

• PGPS (or WFQ) in the packetized version 

• Schedule according to finish time in GPS 

• Guaranteed performance compared to GPS 

 

• Next lecture: PGPS in detail, work-conserving and  non-work-conserving 
scheduling 
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Reading assignment 

 

• A. Parekh, R. Gallager, “A Generalized Processor Sharing 
Approach to Flow Control - The Single Node Case,” IEEE 
Transaction on Networking, 1993, Vol.1, No.3. 

– Read from I to III-before part A 

 

• H. Zhang, “Service Disciplines for Guaranteed Performance 
Service in Packet-Switching Networks,” Proceedings of the IEEE, 
Oct, 1995, pp. 1374-1396 

– Read sections I, II, and III.  
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Lecture plan 

 

• GPS versus PGPS student presentation 

 

• GPS under random arrivals, the M/M/1-PS queue 

 

• Effect of scheduling over multiple hops – the Zhang Paper 
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Scheduling - GPS, PGPS 

• Consider two flows sharing a link. Packet arrivals and sizes 

are shown on the figure. Draw a figure explaining how the 

packets are served with GPS and give the finishing time of 

each packet. (arrivals: t=0,6 and t=1,3,5,7) 

 

• How are the same packets transmitted under PGPS 

(packet based GPS)?   

 

1  2  3  4  5  6 7  8  9 10 

3 

2 

1 

1  2  3  4  5  6 7  8  9 10 

3 

2 

1 

Flow 1 Flow 2 
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Processor sharing queue 

• The performance of GPS (single link or single resource) 
under stochastic request arrival.  

 

• Recall: for FIFO service, Poisson arrivals, Exp service time 

• FIFO, single server – M/M/1 

• FIFO, multiple servers – M/M/m 

• FIFO, infinite servers – M/M/inf 

 

• Question: how can we model the GPS service? 

• Assume Poisson arrivals 

• Assume Exponential service time 
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Processor sharing queue 

• The performance of GPS (single link or single resource) under 
stochastic request arrival. Fluid model. 

 

• Single server (single link, transmission medium or resource) 

• The capacity of the server equally shared by the requests 

– if there are n requests, each receives service at a rate 1/n 

– customers do not have to wait at all, service starts as the customer 
arrives (there is no queue…) 

• M/M/1-PS 

– Poisson customer arrival process () 

– Service demand (job size) is exponential in the sense, that if the 
customer got all the service capacity, then the service time would be 
Exp() (models e.g., exponential file size) 

– Note: if the number of requests is higher, a request stays in the 
server for a longer time.  
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Processor sharing queue 

• M/M/1-PS 

– Poisson customer arrival process () 

– service demand (job size) is exponential in the sense, that if the customer 
got all the service capacity, then the service time would be Exp() 

• Draw the Markov chain  

• Compare it to the M/M/1-FIFO queue. 

 

• Consequently, p, E[N], and E[T] is the same as M/M/1-FIFO 

 

 

 

• Moreover, the average results are the same for M/G/1-PS – 
average measures are insensitive to the service time distribution 
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Processor sharing queue 

• M/M/1-PS example 

• WLAN access point (10Mbit/s) is shared for large file transfer. File transfers 
are initiated randomly by a large population, the file sizes are considered 
to be exponential. The average file size is 1MByte. 

• We assume that the medium access control does not waste capacity 

 

• How much time does it take in average to download a file, if noone else is 
downloading? 

Assume, file downloads are initiated with a rate of 0.5 per second 

•  Give the MC of the system 

• What is the probability that the network is empty? 

• What is the mean number of concurrent downloads and time to download 
a file? 

• Express the probability that the instantaneous rate is less than 1Mbit/s?... 
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Back to scheduling 
algorithms 

• Introduction to the Hui Zhang paper 

• Scheduling for guaranteed services – all flows have some limited 
requirements (average rate, traffic envelope …) 

• Work-conserving: WFQ, WFFQ 

• Non-work-conserving: Jitter EDD, Stop-and-Go 
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Work conserving: WFQ and WFFQ 

• Weighted Fair Queuing 
(same as PGPS) 

• Orders packets 
according to finishing 
times in FFQ (fluid 
fair…) 

• Can schedule packets 
too much ahead of FFQ 

• WFFQ Worst-case fair 
weighted fair … 

• Considers only the 
packets that have 
started service under 
FFQ 

• Leads to less bursty 
traffic 

 

Guaranteed rate:  
Connection 1: 0.5 
Connections 2-11: 0.05  
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Work conserving: troubles 

• Increasing burstiness 

 

• Traffic characterization and 
stability region  

- Set of equations 

 

• E.g., feedback network 

- Set of equations may be 
unsolvable… 

- The network can become 
unstable  
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Non-work-conserving: 
jitter-EDD, Stop-and-Go 

• Jitter-Earliest-Due-Date 

• Keep jitter limited 

• While utilize free link under 
some constraints 

 

 

• Stop-and-Go 

• Window based control 

• Received in one window is 
transmitted in one window 
(with some delay…) 
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Performance comparison 
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Scheduling - summary 

• Scheduling: local algorithms to decide which packet to transmit 

• Scheduling for fairness 

• Generalized processor sharing, fluid fair queueing, M/M/1-PS 

• Packetized versions 

• Scheduling for performance guarantees 

• Work-conserving examples: WFQ, WFFQ 

• Non-work-conserving examples: Jitter-EDD, S&G 

• Performance evaluation: 

• Delay bound, jitter bound, buffer space 

• Dependence on number of hops 

• Correlated performance (e.g., rate vs jitter)   

 

• Material for test: everything discussed in class 

• Material for home assignment: more reading…. 


