
1

EP2210
Scheduling

• Lecture material:
– Bertsekas, Gallager, 6.1.2.

– MIT OpenCourseWare, 6.829

– A. Parekh, R. Gallager, “A generalized Processor Sharing Approach to Flow Control
- The Single Node Case,” IEEE Infocom 1992

2

Scheduling

X

X

X

X

congestion control

rate control

admission control

error control

delay control

scheduling

(congestion control)

(error control)

(admission control)

fairness concept

3

Scheduling - Problem definition

• Scheduling happens at the routers (switches) – or at user nodes if there are
many simultaneous connections

– many flows transmitted simultaneously at an output link

– packets waiting for transmission are buffered

• Question: which packet to send, and when?

• Simplest case: FIFO

– packets of all flows stored in the same buffer in arrival order

– first packet in the buffer transmitted when the previous transmission is complete

– packet transmission in the order of packet arrival

– packet arriving when buffer is full dropped

• Complex cases: separate queues for flows (or set of flows)

– one of the first packets in the queues transmitted

– according to some policy

– needs separate queues and policy specific variable for each flow

• PER FLOW STATE

4

Scheduling - Requirements

• Easy implementation

– has to operate on a per packet basis at high speed routers

• Fair bandwidth allocation

– for elastic (or best effort) traffic

– all competing flows receive the some “fair” amount of resources

• Provide performance guarantees for flows or aggregates

– service provisioning in the Internet (guaranteed service per flow)

– guaranteed bandwidth for SLA, MPLS, VPN (guaranteed service for
aggregates)

– integrated services in mobile networks (UMTS, 4G)

• Performance metrics

– throughput, delay, delay variation (jutter), packet loss probability

– performance guarantees should be de-coupled
(coupled e.g., high throughput -> low delay variation)

5

Scheduling – Implementation issues

• Scheduling discipline has to make a decision before each packet
transmission – every few microseconds

• Decision complexity should increase slower than linearly with the
number of flows scheduled

– e.g., complexity of FIFO is 1

– scheduling where all flows have to be compared scales linearly

• Information to be stored and managed should scale with the
number of flows

– e.g., with per flow state requirement it scales linearly (e.g., queue
length or packet arrival time)

• Scheduling disciplines make different trade-off among the
requirements on fairness, performance provisioning and complexity

– e.g., FIFO has low complexity, but can not provide fair bandwidth share
for flows

6

Scheduling classes
• Work-conserving

– server (output link) is never idle when there is packet waiting

time

output

input 1

input 2

– utilizes output bandwidth efficiently

– burstiness of flows may increase  loss probability at the network
nodes on the transmission path increases

– latency variations at each switch  may disturb delay sensitive traffic

7

time

output

input 1

input 2
d

Scheduling classes
• Nonwork-conserving

– add rate control for each flow

– each packet assigned an eligibility time when it can be transmitted
• e.g, based on minimum d gap between packets

– server can be idle if no packet is eligible

– burstiness and delay variations are controlled

– some bandwidth is lost

– can be useful for transmission with service guarantees

server idle, while packet

waiting from input 2

8

Scheduling for fairness

• The goal is to share the bandwidth among the flows in a “fair”
way

– fairness can be defined a number of ways (see lectures later)

– here fairness is considered for one single link, not for the whole
transmission path

• Max-min fairness

– Maximize the minimum bandwidth provided to any flow not receiving
all bandwidth it requests

– E.g.: no maximum requirement, single node – the flows should
receive the same bandwidth

– Specific cases: weighted flows and maximum requirements

9

Max-min fairness
• Maximize the minimum bandwidth provided to any flow not

receiving all bandwidth it requests

C: link capacity

B(t): set of flows with data to transmit at time t

 (backlogged (saturated) flows)

n(t): number of backlogged flows at time t

Ci(t): bandwidth received by flow i at time t

Case: without weights or
max. requirements

Case: weights

wi: relative weight of flow i

Case: max. requirements

ri: max. bandwidth requirement for flow i

(t): fair share at time t

Ctrt

trtC

C
w

w
tC

tn

C
tC

tBj

j

ii

tBj

j

i
i

i

















))(,min(:)(

))(min()(

)(

)(
)(

)(

,

)(





10

Max-min fairness

• Calculate fair shares:

– 3 backlogged (saturated) flows, equal weights, link capacity 10.

– 3 backlogged flows, weights 1,2,2 link capacity 10

– 4 backlogged flows, max requirements: 2, 3, 4, 5, link capacity 11.

– 3 backlogged flows, rate requirements: 2,4,5, the link capacity is 11.
What are the fair shares now?

C: link capacity

B(t): set of backlogged flows at time t

Ci(t): bandwidth received by flow i at time t

Case: weights

wi: relative weight of flow I

Case: max. requirements

ri: max. bandwidth requirement for flow I

(t): fair share at time t

 Ctrt

trtC

C
w

w
tC

tBj

j

ii

tBj

j

i
i















))(,min(:)(

))(min()(

)(

)(

,

)(





11

Fair queuing-for max-min fairness
• Fluid approximation

– fluid fair queuing (FFQ) or generalized processor sharing (GPS)

– idealized policy to split bandwidth

– assumption: dedicated buffer per flow

– assumption: flows from backlogged queues served simultaneously
(like fluid)

– not implementable, used to evaluate real approaches

– used for performance analysis if per packet performance is not
interesting

C

t

1 time unit
fluid left to transmit (backlog)

3 5 6
physical or logical queues

g=1/3

g=1/2

g=1

time

12

Packet-level Fair queuing
• How to realize GPS/FFQ?

• Bit-by-bit fair queuing
– one bit from each backlogged queue in rounds (round robin) – still

not possible to implement

• Packet-level fair queuing

– one packet from each backlogged queue in rounds ???

Flows with large packets
get more bandwidth!

More sophisticated schemes
required!

rounds

13

Packetized GPS (PGPS)

• How to realize GPS/FFQ?

• Try to mimic GPS

• Transmit packets that would arrive earliest with GPS
– Finishing time (F(p))

• Quantify the difference between GPS and PGPS

GPS

PGPS

F(1) F(2)

14

Fair queuing – group work

• Packet-by-packet GPS (PGPS)

• Compare GPS (fluid) and PGPS (packetized) in the following
scenarios – draw diagrams “backlogged traffic per flow vs. time”.

• Consider one packet in each queue. C=1 unit/sec

1. Two flows, equal size packets, same weight, L1=L2=1 unit

2. Two flows, different size packets, same weight L1=1, L2=2 units

3. Two flows, same packet size, different weight,
L1=L2=1 unit, w1=1, w2=2

C

w

w
tC

tBj

j

i
i






)(

)(

15

Fair queuing – group work

• Compare GPS (fluid) and PGPS (packetized) in the following scenarios –
draw diagrams “backlogged traffic per flow vs. time”.

• Consider one packet in each queue. C=1 unit/sec

1. Two flows, equal size packets, same weight, L1=L2=1 unit

2. Two flows, different size packets, same weight L1=1, L2=2 units

3. Two flows, same packet size, different weight,
L1=L2=1 unit, w1=1, w2=2

time

fluid left

1

1

2

2 3

time

packet data left

1

1

2

2 3

time

fluid left

1

1

2

2 3

time

packet data left

1

1

2

2 3

time

fluid left

1

1

2

2 3

time

packet data left

1

1

2

2 3

first packet to transmit

is selected randomly

C
w

w
tC

tBj

j

i
i






)(

)(
1. 2. 3.

16

Scheduling summary

• Scheduling:

• At the network nodes and at the edge

• To provide quality guarantees or fairness

• Work-conserving and non-work-conserving

• Max-min fairness in a single link, with weights and max. rate requirement

• GPS for max-min fairness in a fluid model

• PGPS (or WFQ) in the packetized version

• Schedule according to finish time in GPS

• Guaranteed performance compared to GPS

• Next lecture: PGPS in detail, work-conserving and non-work-conserving
scheduling

17

Reading assignment

• A. Parekh, R. Gallager, “A Generalized Processor Sharing
Approach to Flow Control - The Single Node Case,” IEEE
Transaction on Networking, 1993, Vol.1, No.3.

– Read from I to III-before part A

• H. Zhang, “Service Disciplines for Guaranteed Performance
Service in Packet-Switching Networks,” Proceedings of the IEEE,
Oct, 1995, pp. 1374-1396

– Read sections I, II, and III.

18

Lecture plan

• GPS versus PGPS student presentation

• GPS under random arrivals, the M/M/1-PS queue

• Effect of scheduling over multiple hops – the Zhang Paper

19

Scheduling - GPS, PGPS

• Consider two flows sharing a link. Packet arrivals and sizes

are shown on the figure. Draw a figure explaining how the

packets are served with GPS and give the finishing time of

each packet. (arrivals: t=0,6 and t=1,3,5,7)

• How are the same packets transmitted under PGPS

(packet based GPS)?

1 2 3 4 5 6 7 8 9 10

3

2

1

1 2 3 4 5 6 7 8 9 10

3

2

1

Flow 1 Flow 2

20

Processor sharing queue

• The performance of GPS (single link or single resource)
under stochastic request arrival.

• Recall: for FIFO service, Poisson arrivals, Exp service time

• FIFO, single server – M/M/1

• FIFO, multiple servers – M/M/m

• FIFO, infinite servers – M/M/inf

• Question: how can we model the GPS service?

• Assume Poisson arrivals

• Assume Exponential service time

21

Processor sharing queue

• The performance of GPS (single link or single resource) under
stochastic request arrival. Fluid model.

• Single server (single link, transmission medium or resource)

• The capacity of the server equally shared by the requests

– if there are n requests, each receives service at a rate 1/n

– customers do not have to wait at all, service starts as the customer
arrives (there is no queue…)

• M/M/1-PS

– Poisson customer arrival process ()

– Service demand (job size) is exponential in the sense, that if the
customer got all the service capacity, then the service time would be
Exp() (models e.g., exponential file size)

– Note: if the number of requests is higher, a request stays in the
server for a longer time.

22

Processor sharing queue

• M/M/1-PS

– Poisson customer arrival process ()

– service demand (job size) is exponential in the sense, that if the customer
got all the service capacity, then the service time would be Exp()

• Draw the Markov chain

• Compare it to the M/M/1-FIFO queue.

• Consequently, p, E[N], and E[T] is the same as M/M/1-FIFO

• Moreover, the average results are the same for M/G/1-PS –
average measures are insensitive to the service time distribution
















1

1][
][,

1
][,)()1()(

NE
TENEnp n

23

Processor sharing queue

• M/M/1-PS example

• WLAN access point (10Mbit/s) is shared for large file transfer. File transfers
are initiated randomly by a large population, the file sizes are considered
to be exponential. The average file size is 1MByte.

• We assume that the medium access control does not waste capacity

• How much time does it take in average to download a file, if noone else is
downloading?

Assume, file downloads are initiated with a rate of 0.5 per second

• Give the MC of the system

• What is the probability that the network is empty?

• What is the mean number of concurrent downloads and time to download
a file?

• Express the probability that the instantaneous rate is less than 1Mbit/s?...

24

Back to scheduling
algorithms

• Introduction to the Hui Zhang paper

• Scheduling for guaranteed services – all flows have some limited
requirements (average rate, traffic envelope …)

• Work-conserving: WFQ, WFFQ

• Non-work-conserving: Jitter EDD, Stop-and-Go

25

Work conserving: WFQ and WFFQ

• Weighted Fair Queuing
(same as PGPS)

• Orders packets
according to finishing
times in FFQ (fluid
fair…)

• Can schedule packets
too much ahead of FFQ

• WFFQ Worst-case fair
weighted fair …

• Considers only the
packets that have
started service under
FFQ

• Leads to less bursty
traffic

Guaranteed rate:
Connection 1: 0.5
Connections 2-11: 0.05

26

Work conserving: troubles

• Increasing burstiness

• Traffic characterization and
stability region

- Set of equations

• E.g., feedback network

- Set of equations may be
unsolvable…

- The network can become
unstable

27

Non-work-conserving:
jitter-EDD, Stop-and-Go

• Jitter-Earliest-Due-Date

• Keep jitter limited

• While utilize free link under
some constraints

• Stop-and-Go

• Window based control

• Received in one window is
transmitted in one window
(with some delay…)

28

Performance comparison

29

Scheduling - summary

• Scheduling: local algorithms to decide which packet to transmit

• Scheduling for fairness

• Generalized processor sharing, fluid fair queueing, M/M/1-PS

• Packetized versions

• Scheduling for performance guarantees

• Work-conserving examples: WFQ, WFFQ

• Non-work-conserving examples: Jitter-EDD, S&G

• Performance evaluation:

• Delay bound, jitter bound, buffer space

• Dependence on number of hops

• Correlated performance (e.g., rate vs jitter)

• Material for test: everything discussed in class

• Material for home assignment: more reading….

