# HIERARCHICAL TRANSFORMATIONS 

 A Practical IntroductionChristopher Peters
HPCViz, KTH Royal Institute of Technology, Sweden
chpeters@kth.se
https://www.kth.se/profile/chpeters/

## Transformations

Many objects are composed of hierarchies
Transformations enable us to compose hierarchies


## Transformations

Positioning geometric objects in the virtual world is an operation fundamental for scene composition and computer animation
Scenes are composed of:

- Viewer/camera
- Objects and shapes (composed of geometric primitives)
- Other (textures, lighting, ...)

In this lecture, we will consider only rotation and translation transformations

- There are others too: Shear, squash, stretch...


## Scene composition

ROYAL INSTITUTE OF TECHNOLOGY


A photorealistic scene ${ }_{\text {(ciria 2013) }}$

## Scene composition



A photorealistic scene (circa 2013)


Underlying representation ${ }_{\text {goonemer: winte) }}$

## Geometric primitives


vertices

faces

polygons

surfaces

Graphical objects are composed of primitives

- More about geometry in subsequent lectures


## Vertices



## Vertices:

vtx1 (-6.0,-4.0), vtx2 (5.0, -6.0), vtx3 (4.0, 5.0), vtx4 (-4.0, 3.0)

## Vertices



Vertices:
vtx1 (-6.0,-4.0), vtx2 (5.0, -6.0), vtx3 (4.0, 5.0), vtx4 (-4.0, 3.0) Q: Why this ordering? Hint: do cross-product on vectors defined by two edges incident to any vertex

## Vertices



Vertices:
vtx1 (-6.0,-4.0),
vtx2 (5.0, -6.0),
vtx3 (4.0, 5.0),
vtx4 (-4.0, 3.0)
Right-hand rule
Winding order of the vertices

## Transformations

Recall translation from previous lecture:

- Translate a point palong a vector $\mathbf{t}$
- General case:

$$
\mathbf{p}^{\prime}=\mathbf{p}+\mathbf{t}
$$

- 2D:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]=\left[\begin{array}{l}
x+t_{x} \\
y+t_{y}
\end{array}\right]
$$

- 3D:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]=\left[\begin{array}{l}
x+t_{x} \\
y+t_{y} \\
z+t_{z}
\end{array}\right]
$$

## Translating an object

Translation operation takes place on a point But a geometric object (mesh) is a collection of vertices How to translate that?

## Translating an object

Translation operation takes place on a point
But a geometric object (mesh) is a collection of vertices
How to translate that?
Translate each of its vertices



## Rotating an object

Rotation operation takes place on a point How to rotate a object?
The same procedure applies:
Rotate each vertex that comprises the object


## Coordinate spaces



What are the coordinates of an object?

- Answer: It depends on the coordinate space


## Coordinate spaces

Object specified in Object space (OS)


What are the coordinates of an object?

- Answer: It depends on the coordinate space

The vertices of an object are usually specified in its own local coordinate space

- Object space (OS)
- Origin often located near the centroid of the object


## World space



An instance of an object is positioned in the world using a transformation

- World space (WS)
- In this case, the transformation Translate ( $t_{x}, t_{y}$ )
- Displacement of $t_{x}$ units along the $x$-axis and $t_{y}$ units along the $y$-axis


## World space




Multiple instances of the same object can be positioned in the world via individual transformations

## World space




Multiple instances of the same object can be positioned in the world via individual transformations

## World space



Positioned in world space (WS) via transform

Transforms
$>\underset{\omega}{\boldsymbol{\omega}}>$

Multiple instances of the same object can be positioned in the world via individual transformations

## World space



Positioned in world space (WS) via transform


Multiple instances of the same object can be positioned in the world via individual transformations

- Objects positioned according to their respective object space origins
- More on this later

ROYAL INSTITUTE
OF TECHNOLOGY

## Geometry and transformations

Geometry
Vertices:
vtx1 (-6.0,-4.0),
$v t x 2$ (5.0, -6.0),
vtx3 (4.0, 5.0),
vtx4 (-4.0, 3.0)


Scene containing three instances in worldspace


Geometry is usually stored separately from respective transformations

- Objects definitions versus object instances
- Memory savings


## Representation

Recall: Transformations are represented as $4 \times 4$ matrices From the last lecture:

## Translation

$$
\begin{aligned}
& \text { Rotation around } \\
& x \text {-axis }
\end{aligned} \mathbf{R}_{x}(\phi)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \phi & -\sin \phi & 0 \\
0 & \sin \phi & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\mathbf{T}\left(t_{x}, t_{y}, t_{z}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Rotation around } \mathbf{R}_{y}(\phi)=\left(\begin{array}{cccc}
\cos \phi & 0 & \sin \phi & 0 \\
0 & 1 & 0 & 0 \\
-\sin \phi & 0 & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Rotation around } & \mathbf{R}_{z}(\phi)=\left(\begin{array}{cccc}
\cos \phi & -\sin \phi & 0 & 0 \\
\sin \phi & \cos \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{array}
$$

$$
\mathbf{M} \cdot \mathbf{x}=\left(\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)
$$

## Local Coordinate Marker

Nothing is displayed on the screen until you draw an object Transformation matrices are stored in memory How do we keep track of positioning information?

## Local Coordinate Marker

Nothing is displayed on the screen until you draw an object Transformation matrices are stored in memory How do we keep track of positioning information?

One answer: Local Coordinate Marker (LCM)

- A special coordinate system that we track via pen and graph paper or mentally
- The LCM represents a transformation matrix
- But in a manner more intuitive to humans



## Local Coordinate Marker



LCM begins at the worldspace origin Its basis vectors match those of the WS basis

## Local Coordinate Marker



We keep a track of the marker as we conduct various positioning operations

## Local Coordinate Marker



Until we draw the object

- Note: the LCM is not drawn on the screen!
- (unless you decide to add some code to do so...)


## Practical transformations

## The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix


Modelview matrix
$\left(\begin{array}{llll}1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0\end{array}\right)$

## Practical transformations

The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix




## Practical transformations

## The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix



## Practical transformations

## The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix



## Practical transformations

The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix
- Translations and rotations concatenate into the current state of the Modelview matrix


Transformation Operations
Initialise()
Translate (5, 3)
Draw_Square ()
Translate ( $-4,-1$ )

Modelview matrix
$\left(\begin{array}{llll}1.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 1.0 & 0.0 & 2.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0\end{array}\right)$

## Practical transformations

The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix
- Translations and rotations concatenate into the current state of the Modelview matrix



Displacements

## Practical transformations

The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix
- Translations and rotations concatenate into the current state of the Modelview matrix



## Rotations and translations



Let's add in some rotations to the mix

## Rotations and translations



Let's add in some rotations to the mix

## Rotations and translations



Let's add in some rotations to the mix

## Rotations and translations



Let's add in some rotations to the mix
Notice how the final translation of $(2,0)$ takes place with respect to the LCM coordinate system

- Not the WS axes


## Order matters




Translation and rotation operations are non-commutative

## Order matters



Translation and rotation operations are non-commutative

## Order matters



Translation and rotation operations are non-commutative See matrices from last lecture

## Object space revisited

Square1 specified in Object space (OS)


Positioning in world space (WS) via transform


Transformation Operations

Initialise()

Example 1: Objects are placed in world space according to their corresponding origin in object space

## Object space revisited

Square1 specified in Object space (OS)


Positioning in world space (WS) via transform


Transformation Operations

Initialise()
Translate (2, 2)

Example 1: Objects are placed in world space according to their corresponding origin in object space

## Object space revisited

Square1 specified in Object space (OS)


Positioning in world space (WS) via transform


Transformation Operations

Initialise()
Translate (2,2)
Draw_Square1 ()

Example 1: Objects are placed in world space according to their corresponding origin in object space
i.e. Object space origin is mapped onto the LCM

## Object space revisited

Square2 specified in Object space (OS)



Example 2: Objects are placed in world space according to their corresponding origin in object space

## Object space revisited

Square2 specified in Object space (OS)


Positioning in world space (WS) via transform


Transformation Operations

Initialise()
Translate (2,2)

Example 2: Objects are placed in world space according to their corresponding origin in object space

## Object space revisited

Square2 specified in Object space (OS)



Example 2: Objects are placed in world space according to their corresponding origin in object space
i.e. Object space origin is mapped onto the LCM

Notice here that the LCM (transformation) is the exact same as in example 1

## Object space revisited

Square1 specified in Object space (OS)


Positioning in world space (WS) via transform


Transformation Operations

Initialise()
Translate (2,2) Rotate (45)
Draw_Square1 ()

Rotations also occur about the origin of the object

- Default axis of rotation

Notice that the transformation is the exact same

## Object space revisited

Square2 specified in Object space (OS)



Rotations also occur about the origin of the object

- Default axis of rotation

Notice that the transformation is the exact same

## Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful


## Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful

Transformation Operations


## Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful

Transformation Operations


## Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful


## Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful


## Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful

(another option in this case: re-initialise the Modelview matrix)

## Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful


## Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful


## Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful

(another option in this case: re-initialise the Modelview matrix)

## Adding some animation

Enter a variable angle for the first rotate Increase it by e.g. 10 degrees at each update


## The stack



Transformations are saved on and loaded from a stack data structure Saving a matrix = push operation
Loading a matrix = pop operation LIFO (last in, first out)

- Push on to the top of the stack
- Pop off the top of the stack


## Operations summary

Initialise()
Initialise an identity transformation
Identity matrix (look for functions with similar names to Loadrdentity ())
Translate ( $t_{x}, t_{y}$ )
Matrix multiplication
Rotate (degrees)
Usually also specify an axis of rotation
In our examples, assume it is $(0,0,1)$
Rotations around the $z$ axis i.e. in the $X Y$ plane PushMatrix()

- Save the current Modelview matrix state on stack PopMatrix()
- Load a previous Modelview matrix state from stack


## Introducing hierarchies

A tree of separate objects that move relative to each other

- The positions and orientations of objects further down the tree are dependent on those higher up
- Parent and child objects
- Transformations applied to parents are also applied down the hierarchy to their children
Examples:

1. The human arm (and body) Hand configuration depends the elbow configuration, depends on shoulder configuration, and so on...
2. The Solar system

Solar bodies rotate about their own axes as well as orbiting around the Sun (moons around planets, planets around the Sun)

## Hierarchies

- You have already learned the basic operations necessary for hierarchical transformations
- Recall: up to now, the LCM has been moved back to the world-space origin before placing each object




## Hierarchies

It's slightly different in a hierarchy

- Objects depend on others (a parent object) for their configurations (position and orientation)
- These objects need to be placed relative to their parent objects' coordinates, rather than in world-space
In practice, this involves the use of nested PushMatrix() and PopMatrix() operations
- Especially when there are multiple branches


## Simple chain example

- Three components
- A handle
- Two links



## Step by step

- In more detail:

```
Transformation Operations
Initialise()
PushMatrix()
```



## Step by step

- In more detail:

```
Transformation Operations
Initialise()
PushMatrix()
    Translate (Handle_pos)
    DrawHandle()
```



## Step by step

- In more detail:

```
Transformation Operations
Initialise()
PushMatrix()
    Translate(Handle_pos)
    DrawHandle()
    Translate(Link1_trans)
```



## Step by step

- In more detail:

```
Transformation Operations
Initialise()
PushMatrix()
    Translate(Handle_pos)
    DrawHandle()
    Translate(Link1_trans)
    Rotate(Link1_ang)
```



## Step by step

- In more detail:

```
Transformation Operations
Initialise()
PushMatrix()
    Translate(Handle_pos)
    DrawHandle()
    Translate(Link1_trans)
    Rotate (Link1_ang)
    Draw_Link1()
```



## Step by step

- In more detail:

```
Transformation Operations
Initialise()
PushMatrix()
    Translate(Handle_pos)
    DrawHandle()
    Translate(Link1_trans)
    Rotate(Link1_ang)
    Draw_Link1()
    Translate(Link2_trans)
```



## Step by step

- In more detail:

```
Transformation Operations
Initialise()
PushMatrix()
    Translate(Handle_pos)
    DrawHandle()
    Translate(Link1_trans)
    Rotate (Link1_ang)
    Draw_Link1()
    Translate(Link2_trans)
    Rotate(Link2_ang)
```



## Step by step

- In more detail:

```
Transformation Operations
    Initialise()
    PushMatrix()
    Translate(Handle_pos)
    DrawHandle()
    Translate(Link1_trans)
    Rotate(Link1_ang)
    Draw_Link1()
    Translate(Link2_trans)
    Rotate (Link2_ang)
    Draw_Link2()
```



## Step by step

- In more detail:

```
Transformation Operations
    Initialise()
    PushMatrix()
    Translate(Handle_pos)
    DrawHandle()
    Translate(Link1_trans)
    Rotate(Link1_ang)
    Draw_Link1()
    Translate(Link2_trans)
    Rotate(Link2_ang)
    Draw_Link2()
PopMatrix()
```



## Putting it into Practice



## https://processing.org/

"...a flexible software sketchbook and a language for learning how to code within the context of visual arts"

- Good for a foray into transformations without the complexity of an IDE
- OpenGL-based: similar (but less sophisticated) functionality to the framework that you will use in the course
- Straight forward mapping from operations we covered in this lecture to graphics programming functions



## Something for the break



## Q: What is the transformation T1?



Vertex position:
OS (4.0,5.0)
WS (13.0,12.0)

Q: What is the transformation T3?


> Vertex position: OS $(4.0,5.0)$ WS $(-14.3,7.4)$

