EP2210
Scheduling

e Lecture material:
— Bertsekas, Gallager, 6.1.2.
— MIT OpenCourseWare, 6.829

— A. Parekh, R. Gallager, “A generalized Processor Sharing Approach to Flow Control
- The Single Node Case,” IEEE Infocom 1992




Scheduling

fairness concept

congestion control
rate control
admission control
error control
delay control
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(error control)
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Scheduling - Problem definition

e Scheduling happens at the routers (switches) — or at user nodes if there are
many simultaneous connections

— many flows transmitted simultaneously at an output link
— packets waiting for transmission are buffered

e Question: which packet to send, and when?

e Simplest case: FIFO
— packets of all flows stored in the same buffer in arrival order
— first packet in the buffer transmitted when the previous transmission is complete
— packet transmission in the order of packet arrival
— packet arriving when buffer is full dropped

e Complex cases: separate queues for flows (or set of flows)
— one of the first packets in the queues transmitted
— according to some policy

— needs separate queues and policy specific variable for each flow
= PER FLOW STATE




Scheduling - Requirements

e Easy implementation

— has to operate on a per packet basis at high speed routers
e Fair bandwidth allocation

— for elastic (or best effort) traffic

— all competing flows receive the some “fair” amount of resources
e Provide performance guarantees for flows or aggregates

— service provisioning in the Internet (guaranteed service per flow)

— guaranteed bandwidth for SLA, MPLS, VPN (guaranteed service for
aggregates)

— integrated services in mobile networks (UMTS, 4G)
e Performance metrics
— throughput, delay, delay variation (jutter), packet loss probability

— performance guarantees should be de-coupled
(coupled e.g., high throughput -> low delay variation)




Scheduling — Implementation issues

e Scheduling discipline has to make a decision before each packet
transmission — every few microseconds

e Decision complexity should increase slower than linearly with the
number of flows scheduled
— e.g., complexity of FIFO is 1
— scheduling where all flows have to be compared scales linearly
e Information to be stored and managed should scale with the
number of flows

— e.g., with per flow state requirement it scales linearly (e.g., queue
length or packet arrival time)

e Scheduling disciplines make different trade-off among the
requirements on fairness, performance provisioning and complexity

— e.g., FIFO has low complexity, but can not provide fair bandwidth share
for flows




Scheduling classes

= Work-conserving
— server (output link) is never idle when there is packet waiting

_ [ ]
Input 1
_ N =
Input 2
N
output
time T

— utilizes output bandwidth efficiently

— burstiness of flows may increase — loss probability at the network
nodes on the transmission path increases

— latency variations at each switch - may disturb delay sensitive traffic




Scheduling classes

= Nonwork-conserving
— add rate control for each flow

— each packet assigned an eligibility time when it can be transmitted
e e.g, based on minimum d gap between packets

— server can be idle if no packet is eligible
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— burstiness and delay variations are controlled
— some bandwidth is lost
— can be useful for transmission with service guarantees




Scheduling for fairness

e The goal is to share the bandwidth among the flows in a “fair”
way
— fairness can be defined a number of ways (see lectures later)

— here fairness is considered for one single link, not for the whole
transmission path

e Max-min fairness

— Maximize the minimum bandwidth provided to any flow not receiving
all bandwidth it requests

— E.g.: no maximum requirement, single node — the flows should
receive the same bandwidth

— Specific cases: weighted flows and maximum requirements




Max-min fairness

e Maximize the minimum bandwidth provided to any flow not
receiving all bandwidth it requests

C: link capacity

B(t): set of flows with data to transmit at time t
(backlogged (saturated) flows)

n(t): number of backlogged flows at time t

Ci(t): bandwidth received by flow i at time t

Case: without weights or C.(t) = <
max. requirements n(t)
Case: weights C.(t) = W, C

w;: relative weight of flow i

Case: max. requirements
r;: max. bandwidth requirement for flow i C; (t) = min(r; (1))

a(t): fair share at time t a(t): Z min(rj ,at)=C
jeB(1)




Max-min fairness

C: link capacity

B(t): set of backlogged flows at time t
C,(t): bandwidth received by flow i at time t
Case: weights

w;: relative weight of flow I C.(t) =

ZW

jeB(1)

Case: max. requirements

ri: max.
o(t): fair share at time t

bandwidth requirement for flow I ]
! C, (t) = min(r, (1))

a(t): D min(r;,a(t))=C

j€B(t)

e Calculate fair shares:

3 backlogged (saturated) flows, equal weights, link capacity 10.
3 backlogged flows, weights 1,2,2 link capacity 10
4 backlogged flows, max requirements: 2, 3, 4, 5, link capacity 11.

3 backlogged flows, rate requirements: 2,4,5, the link capacity is 11.
What are the fair shares now?




Fair queuing-for max-min fairness

e Fluid approximation

fluid fair queuing (FFQ) or generalized processor sharing (GPS)
idealized policy to split bandwidth
assumption: dedicated buffer per flow

assumption: flows from backlogged queues served simultaneously
(like fluid)

not implementable, used to evaluate real approaches

used for performance analysis if per packet performance is not
interesting

fluid left to transmit (backlog)

1 time unit

physical or logical queues




B
Packet-level Fair queuing

e How to realize GPS/FFQ?
= Bit-by-bit fair queuing

— one bit from each backlogged queue in rounds (round robin) — still
not possible to implement

» Packet-level fair queuing
— one packet from each backlogged queue in rounds ???

T~ Flows with large packets
get more bandwidth!

More sophisticated schemes
required!




Packetized GPS (PGPS)

e How to realize GPS/FFQ?

e Try to mimic GPS

e Transmit packets that would arrive earliest with GPS
— Finishing time (F(p))

e Quantify the difference between GPS and PGPS
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Fair gueuing — group work
Packet-by-packet GPS (PGPS)

Compare GPS (fluid) and PGPS (packetized) in the following
scenarios — draw diagrams “backlogged traffic per flow vs. time”.

Consider one packet in each queue. C=1 unit/sec

. Two flows, equal size packets, same weight, L1=L2=1 unit
. Two flows, different size packets, same weight L1=1, L2=2 units
. Two flows, same packet size, different weight,

L1=L2=1 unit, wl=1, w2=2

ZW

jeB(t)

C.(t) =




Scheduling summary

e Scheduling:
e At the network nodes and at the edge
e To provide quality guarantees or fairness
e Work-conserving and non-work-conserving

e Max-min fairness in a single link, with weights and max. rate requirement
e GPS for max-min fairness in a fluid model
e PGPS (or WFQ) in the packetized version

e Schedule according to finish time in GPS

e Guaranteed performance compared to GPS

e Next lecture: PGPS in detail, work-conserving and non-work-conserving
scheduling




Reading assignment

e A. Parekh, R. Gallager, “A Generalized Processor Sharing
Approach to Flow Control - The Single Node Case,” IEEE
Transaction on Networking, 1993, Vol.1, No.3.

— Read from | to Ill-before part A

= H. Zhang, “Service Disciplines for Guaranteed Performance
Service in Packet-Switching Networks,” Proceedings of the IEEE,
Oct, 1995, pp. 1374-1396

— Read sections I, 11, and IIlI.
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