- Exam - when?
- January 7?

Academic year 2015/2016

Autumn term: August 31, 2015 - January 18, 2016

- Study period 1: 15-08-31-15-10-16
- Own work: 15-10-19 - 15-10-22
- Exam period 1: 15-10-23 - 15-10-30
- Period 2: 15-11-02 - 15-12-18
- Own work: 15-12-21 - 16-01-05
- Own work/Re-exam 1: 16-01-07 - 16-01-09
- Exam period 2: 16-01-11-16-01-18

Introduction to Visualization and Computer Graphics DH2320, Fall 2015

Prof. Dr. Tino Weinkauf

Mathematics

Vectors and Points

- Vectors
- A vector is an arrow in space
- We use bold letters for vectors: $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}$...
- Vector space V : set of possible vectors

Vector Operations

vector-scalar product
$\lambda \cdot \mathbf{v} \quad(\lambda \in \mathbb{R}, \mathbf{v} \in V)$

Adding Vectors

vector-addition
$\mathbf{v}+\mathbf{w} \quad(\mathbf{v}, \mathbf{w} \in V)$

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

*) special case of

Subtracting Vectors

*) special case of addition

$\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$

$\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$

$$
\begin{aligned}
\lambda(\mathbf{v}+\mathbf{w}) & =\lambda \mathbf{v}+\lambda \mathbf{w} \\
\lambda(\mu \mathbf{v}) & =\lambda \mu(\mathbf{v})
\end{aligned}
$$

$$
\mathbf{v}-\mathbf{w}=-(\mathbf{w}-\mathbf{v})
$$

- Vectors
- A vector is an arrow in space

- Points
- Fix an origin
- Store vector from origin to point
- „Vectors are differences of points"

Algebraic Representation (Implementation)

Coordinates!

$$
\mathbf{v}=\binom{x-\text { coord } .}{y-\text { coord } .}=\binom{v_{1}}{v_{2}}
$$

Project on coordinate vectors

- We can add more entries:

- Or even more entries:

$$
d=\text { "dimension" }
$$

Geometry: vectors are arrows in space

$\mathbf{x}=\binom{x_{1}}{x_{2}}$

Algebra:
arrays of numbers

$$
\mathbf{x}+\mathbf{y}=\binom{x_{1}+y_{1}}{x_{2}+y_{2}}
$$

Adding Vectors:
Concatenation
Algebra:
adding numbers

Scalar-Vector Multiplication:
Scaling (incl. mirroring)

$$
\lambda \mathbf{x}=\binom{\lambda x_{1}}{\lambda x_{2}}
$$

Algebra:
multiplying with real number

- Null vector

$$
\mathbf{0}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

- Does not change other vectors in addition
- $\mathbf{v}+\mathbf{0}=\mathbf{0}+\mathbf{v}=\mathbf{v}$ for all vectors \mathbf{v}
- Definition: A real vector space of dimension d
- The set of all d-tupels:

$$
\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{d-\text { times }}=\mathbb{R}^{d} \quad \mathbf{x} \in \mathbb{R}^{d}: \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right)
$$

- With two operations

$$
\frac{\mathbf{x}+\mathbf{y}:=\left(\begin{array}{c}
x_{1}+y_{1} \\
\vdots \\
x_{d}+y_{d}
\end{array}\right)}{\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}, \quad \lambda \in \mathbb{R}}
$$

Geometrically

$$
\mathbf{p}=\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i}
$$

Algebraically

The concept of linear combinations is the corner stone of graphics and visualization.

Linear Combinations \& Matrices

- Matrix elements

$$
x_{\text {row,column }}
$$

- Row first, then column
- " y "-coordinate of the array first (common convention)
- Algebraic rule:
- Vector-matrix product:

$\mathbf{y}=\mathbf{M} \cdot \mathbf{x}$
- Algebraic rule:
- Vector-matrix product:

column vectors
- Matrix-Vector Multiplication of the matrix
$\left[\begin{array}{ccc}x_{1,1} & \cdots & x_{1, n} \\ \vdots & & \vdots \\ x_{m, 1} & \cdots & x_{m, n}\end{array}\right] \cdot\left[\begin{array}{c}\lambda_{1} \\ \vdots \\ \lambda_{n}\end{array}\right]:=\sum_{i=1}^{n} \lambda_{i}\left[\begin{array}{c}x_{1, i} \\ \vdots \\ x_{m, i}\end{array}\right]=\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i}$

$$
=\left[\begin{array}{c}
\lambda_{1} \cdot x_{1,1}+\cdots+\lambda_{n} \cdot x_{1, n} \\
\vdots \\
\lambda_{1} \cdot x_{m, 1}+\cdots+\lambda_{n} \cdot x_{m, n}
\end{array}\right]
$$

Standard Transformations

- Translate a point \mathbf{p} along a vector \mathbf{t}
- General case:

$$
\mathbf{p}^{\prime}=\mathbf{p}+\mathrm{t}
$$

- 2D:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]=\left[\begin{array}{l}
x+t_{x} \\
y+t_{y}
\end{array}\right]
$$

- 3D:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]=\left[\begin{array}{l}
x+t_{x} \\
y+t_{y} \\
z+t_{z}
\end{array}\right]
$$

- Scale a point \mathbf{p} in each dimension by the factors s_{x}, s_{y}, s_{z}
- General case:

$$
\mathbf{p}^{\prime}=\mathbf{S} \cdot \mathbf{p}
$$

- 2D:

$$
\mathbf{S}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad \mathbf{S}=\left[\begin{array}{cccc}
s_{1} & 0 & \cdots & 0 \\
0 & s_{2} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & s_{n}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- 3D:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Making something uniformly smaller:

$$
s_{x}=s_{y}=s_{z}<1
$$

Making something uniformly bigger:
$s_{x}=s_{y}=s_{z}>1$
Note:
Center is at the origin

$$
s_{x} \neq s_{y} \neq s_{z}
$$

- Rotate a point p around the origin with an angle α in counter-clockwise direction
- 2D:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\begin{aligned}
& x^{\prime}=r * \cos (\alpha+\phi) \\
& x^{\prime}=r * \cos \alpha * \cos \phi-r * \sin \alpha * \sin \phi \\
& x^{\prime}=x * \cos \phi-y * \sin \phi \\
& y^{\prime}=r * \sin (\alpha+\phi) \\
& y^{\prime}=r * \cos \alpha * \sin \phi+r * \sin \alpha * \cos \phi \\
& y^{\prime}=x * \sin \phi+y * \cos \phi
\end{aligned}
$$

Remark: The α from this slide is not the α from the previous slide!

- Rotate a point \mathbf{p} around a rotation axis with an angle α in counter-clockwise direction

- Rotation matrices for the rotation around the coordinate axes:

$$
\begin{aligned}
\mathbf{R}_{x} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right) \\
\mathbf{R}_{y} & =\left(\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right) \\
\mathbf{R}_{z} & =\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- A shear is given as
- 2D:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & s_{y} \\
s_{x} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- A shear is given as
- 3D:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & s_{y x} & s_{z x} \\
s_{x y} & 1 & s_{z y} \\
s_{x z} & s_{y z} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

- Shears can be used to describe rotations
- Example: Rotation of 2D objects using three subsequent shear transformations $\binom{x}{y}=\left(\begin{array}{cc}1 & -\tan \alpha / 2 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{cc}1 & 0 \\ \sin \alpha & 1\end{array}\right) \cdot\left(\begin{array}{cc}1 & -\tan \alpha / 2 \\ 0 & 1\end{array}\right) \cdot\binom{x}{y}$

- The Identity matrix keeps points in their original location.

$$
\mathbf{M}_{\text {identity }}=\mathbf{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

General case

Homogeneous Coordinates (short version)

- Translations are not linear
- $\mathbf{x} \rightarrow \mathbf{M x}$ cannot encode translations
- Proof: Origin cannot be moved:

$$
\mathbf{M} \cdot \mathbf{0}=\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

- Solution: Just add a constant one
- Increase dimension $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d+1}$
- Last entry $=1$ in vectors
- "Cheap Trick", "Evil Hack"

$$
\begin{aligned}
\mathbf{M}^{\prime} \cdot \mathbf{x} & =\left(\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & t_{1} \\
m_{21} & m_{22} & m_{23} & t_{2} \\
m_{31} & m_{32} & m_{33} & t_{3} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right) \\
& =\left(\begin{array}{llll}
\ddots & & \ddots & \mid \\
& \mathbf{M} & & \mathbf{t} \\
\therefore & & \ddots & \mid \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\mid \\
\mathbf{x} \\
\mid \\
1
\end{array}\right)=\left(\begin{array}{c}
\mid \\
\mathbf{M x}+\mathbf{t} \\
\mid \\
1
\end{array}\right)
\end{aligned}
$$

- General case

$$
\mathbf{M} \cdot \mathbf{x}=\left(\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)
$$

- w^{\prime} might be different from 1
- Convention: Divide by w-coord. before using

- General case

$$
\mathbf{M} \cdot \mathbf{x}=\left(\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
1
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right) \equiv\left(\begin{array}{c}
y_{1} / y_{4} \\
y_{2} / y_{4} \\
y_{3} / y_{4} \\
1
\end{array}\right)
$$

- Rules:
- Before using as 3D point, divide by last (4th) entry
- No normalization required during subsequent transformations (matrix-multiplications, see later)
- Projective Geometry
- Not just an evil hack
- Deep \& interesting theoretical background
- More on this later
- For simplicity
- We'll treat it as a computational trick for now
- Focus on the graphics application
- Remember for now:
- We can build "4D Translation matrices" for 3D+1 points
- We can "divide" by a common linear factor

Overview Standard Transformations with Homogeneous Coordinates

	Translation	Scaling	Shearing
2D	$\mathbf{T}\left(t_{x}, t_{y}\right)=\left(\begin{array}{lll}1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1\end{array}\right)$	$\mathbf{S}\left(s_{x}, s_{y}\right)=\left(\begin{array}{lll}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1\end{array}\right)$	$\mathbf{H}_{x}=\left(\begin{array}{lll}1 & h_{y} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
3D	$\mathbf{T}\left(t_{x}, t_{y}, t_{z}\right)=\left(\begin{array}{llll}1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right)$	$\mathbf{S}\left(s_{x}, s_{y}, s_{z}\right)=\left(\begin{array}{llll}s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$	$\mathbf{H}=\left(\begin{array}{llll}1 & s_{1} & s_{2} & 0 \\ s_{3} & 1 & s_{4} & 0 \\ s_{5} & s_{6} & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

2D-Rotation	3D-Rotation
$\mathbf{R}(\boldsymbol{\phi})=\left(\begin{array}{ccc}\cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right)$	$\begin{aligned} & \text { Rotation around } \\ & \quad x \text {-axis }\end{aligned} \mathbf{R}_{x}(\phi)=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
	$\begin{aligned} & \text { Rotation around } \\ & y \text {-axis }\end{aligned} \mathbf{R}_{y}(\boldsymbol{\phi})=\left(\begin{array}{cccc}\cos \phi & 0 & \sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
	$\begin{gathered}\text { Rotation around } \\ z \text {-axis }\end{gathered} \quad \mathbf{R}_{z}(\boldsymbol{\phi})=\left(\begin{array}{cccc}\cos \phi \\ \sin \phi & -\sin \phi & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Further Transformations

General case

$$
\mathrm{S}_{\lambda}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Combining Transformations

- You can combine all of these
- Example: General axis of rotation
- First rotate rotation axis to x-axis
- Rotate around x
- Rotate back
- Question
- How to combine multiple transformation matrices?
- Execute multiple transformations, one after another
- Written as product: matrix multiplication
- (B $\cdot \mathbf{A}) \cdot \mathbf{x}$:
- Apply A to x first
- Then B
- $(B \cdot A)$ is again a matrix

- Consider (B • A):
- Rotate first (A)
- Then scale (B)

- How to compute(B•A)?
- Transform basis vectors
- Transform again
- Matrix product:

- Matrix product:

- General matrix products:
- B $\cdot \mathbf{A}$: possible if \#Row(A) = \#Columns(B)
n

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & & \vdots \\
a_{m, 1} & \cdots & a_{m, n}
\end{array}\right] \\
\mathbf{B} & =\left[\begin{array}{ccc}
b_{1,1} & \cdots & b_{1, m} \\
\vdots & & \vdots \\
b_{k, 1} & \cdots & b_{k, m}
\end{array}\right] \\
\mathbb{R} & =\left[\begin{array}{ccc}
r_{1,1} & \cdots & r_{1, n} \\
\vdots & & \vdots \\
r_{k, 1} & \cdots & r_{k, n}
\end{array}\right]
\end{aligned}
$$

$$
r_{i, j}=\sum_{q=1}^{m} a_{q, j} \cdot b_{i, q}
$$

- Matrix-Multiplication
- Associative

$$
(\mathbf{A} \cdot \mathbf{B}) \cdot \mathrm{C}=\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})
$$

- Includes vector-multiplication

$$
(\mathbf{A} \cdot \mathbf{B}) \cdot v=\mathbf{A} \cdot(\mathbf{B} \cdot \mathrm{v})
$$

- In general, not commutative:

Settings

$\lambda \in \mathbb{R}$
A, B, C - matrices
v, w - vectors

It might be that $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$

- Linear

$$
\begin{gathered}
\mathbf{A} \cdot(\mathrm{v}+\mathrm{w})=\mathbf{A} \cdot \mathrm{v}+\mathbf{A} \cdot \mathrm{w} \\
\mathbf{A} \cdot(\lambda \cdot \mathrm{v})=\lambda \cdot(\mathbf{A} \cdot \mathrm{v})
\end{gathered}
$$

More Vector Operations: Scalar Products

$\left\|\mathrm{v}_{1}\right\|=2.3 \mathrm{~cm} / \mathrm{v}_{1} / \mathrm{v}_{2} \|=4.2 \mathrm{~cm}$

Length of Vectors

"length" or "norm"
$\|\mathbf{v}\|$ yields real number ≥ 0

Angle between Vectors

$$
\begin{gathered}
\text { angle } \angle\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \\
\text { yields real number } \\
{[0, \ldots, 2 \pi)=\left[0, \ldots, 360^{\circ}\right)}
\end{gathered}
$$

Angle between Vectors

Projection

Projection: determine

length of \mathbf{v} along direction of \mathbf{w}

Scalar Product*)

$$
\begin{aligned}
& \mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\| \cdot\|\mathbf{w}\| \cdot \cos \angle(\mathbf{v}, \mathbf{w}) \\
& \mathbf{v} \cdot \mathbf{w}=\binom{v_{1}}{v_{2}} \cdot\binom{w_{1}}{w_{2}}:=v_{1} \cdot w_{1}+v_{2} \cdot w_{2}
\end{aligned}
$$

Scalar Product*)

$$
\begin{aligned}
& \quad \mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\| \cdot\|\mathbf{w}\| \cdot \cos \angle(\mathbf{v}, \mathbf{w}) \\
& \text { also: }\langle\mathbf{v}, \mathbf{w}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { Length: }\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}} \\
& \text { Angle: } \angle(\mathbf{v}, \mathbf{w})=\arccos (\mathbf{v} \cdot \mathbf{w}) \\
& \text { Projection: }{ }^{\mathbf{v}} \text { prj on } \mathbf{w}^{\prime \prime}=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}
\end{aligned}
$$

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\| \cdot\|\mathbf{w}\| \cdot \cos \angle(\mathbf{v}, \mathbf{w})
$$

Comprises: length, projection, angles

- Properties
- Symmetry (commutativity)

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle
$$

- Bilinearity

$$
\begin{aligned}
& \langle\lambda \mathbf{v}, w\rangle=\lambda\langle\mathbf{v}, w\rangle=\langle\mathbf{v}, \lambda w\rangle \\
& \langle\mathbf{u}+\mathbf{v}, w\rangle=\langle\mathbf{u}, w\rangle+\langle\mathbf{v}, w\rangle
\end{aligned}
$$

Settings

$\lambda \in \mathbb{R}$
$\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{d}$
(symmetry: same for second argument)

- Positive definite

$$
\langle\mathbf{u}, \mathbf{u}\rangle \geq 0, \quad[\langle\mathbf{u}, \mathbf{u}\rangle=\mathbf{0}] \Rightarrow[\mathbf{u}=\mathbf{0}]
$$

- Do not mix
- Scalar-vector product
- Inner (scalar) product
- In general

$$
\langle\mathbf{x}, \mathbf{y}\rangle \cdot \mathrm{z} \neq \mathbf{x} \cdot\langle\mathbf{y}, \mathbf{z}\rangle
$$

- Beware of notation:
- $(\mathrm{x} \cdot \mathrm{y}) \cdot \mathrm{z} \neq \mathrm{x} \cdot(\mathrm{y} \cdot \mathrm{z})$
-(no violation of associativity: different operations)
- Cross-Product: Exists Only For 3D Vectors!
- $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{3}$
- $\mathbf{x} \times \mathbf{y}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \times\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right):=\left(\begin{array}{l}x_{2} y_{3}-x_{3} y_{2} \\ x_{3} y_{1}-x_{1} y_{3} \\ x_{1} y_{2}-x_{2} y_{1}\end{array}\right)$
- Geometrically: Theorem
- $\mathbf{x} \times \mathbf{y}$ orthogonal to \mathbf{x}, \mathbf{y}
- Right-handed system ($\mathbf{x}, \mathbf{y}, \mathbf{x} \times \mathbf{y}$)
- $\|x \times y\|=\|x\| \cdot\|y\| \cdot \sin \angle(x, y)$

- Bilinearity
- Distributive:
- Scalar-Mult.:
- But beware of
- Anti-Commutative:
- Not associative; we can have
$\mathbf{u} \times \mathbf{v}=-\mathbf{v} \times \mathbf{u}$
$\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
$(\lambda \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(\lambda \mathbf{v})=\lambda(\mathbf{u} \times \mathbf{v})$
$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} \neq \mathbf{u} \times(\mathbf{v} \times \mathbf{w})$

