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EP2210 – Performance 
evaluation of communication 
networks 

 
Course objectives: 
• Advanced networking course 
• Discuss mathematical modeling in some main areas of 

networking 
– Learn techniques to address performance related questions 
– Discuss some of the significant results – and read the original 

papers 
– Improve our “paper reading” (and writing) skills 
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Topics 
 
1. Traffic modeling 

 
2. Multiple access protocols 

 
3. Congestion control 

 

Can I use simple “random” 
packet arrival to evaluate my 
protocol? 

What throughput should I expect for 
my TCP session?  

The random access control I have 
implemented has zero throughput… 
what is going on? 
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Topics 
 
3. Scheduling 

 
4. Fairness 

 
5. Multimedia 

communication 

How difficult scheduling should I 
implement to satisfy flows with 
different needs?  

Should I add redundancy, or should 
I retransmit? Or maybe I should not 
even try… 

Is my network fair? What is 
fairness, by the way? Equality? 
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Course setup 
• Scheduled activities: 

– 12 lectures of 2 hours  
– make-up test opportunity, right after the last lecture 
– project presentations  

• 2 lectures per subject 
– first lecture – introduction and simple models 
– second lecture – advanced models,discussion of papers, phd student 

presentations 
• Midterm tests (5 tests altogether, lectures 3, 5, 7, 9, 12) 
• Home assignments (3 home assignments altogether, submitted at 

lectures 6, 9, 12) 
• Project 
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Requirements 
• Read all the papers  

– covering the lecture and for home reading 
• Home assignments  

– questions to answer  
– numerical examples (e.g., matlab) 
– independent solutions, submit one paper copy at the lecture or at 

STEX 
– tell me in advance if you can not submit on time (minus points) 

• Tests  
– ca. 20 minutes 
– questions on the lecture material and about the papers (open 

book/computer) 
– make-up test after the course (missed or weak results)  

6 



Requirements 
• Project 

– in groups of ca. 2 students 
– subject selected from subject list or on your own (discuss 

with the instructor) 
– comparative review of 3-5 papers in the area 
– written report of 4-5 pages 
– presentation of the project 
– schedule: defined later 
– groups: defined later by the instructor based on the study 

results in the course…. 
– good reports from earlier years are available on the web  
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Grading 
• Tests: 50% 
• Home assignments: 30% 
• Project 20% (same for all project members) 

– detailed on the web-page under Projects 
 

• Grading guidelines (approx): 
– 90%:-A, 80%-B, 70%-C, 60%-D, 50%-E, 45%-Fx 
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Requirements – graduate 
students 

• Paper presentation (for 9ECTS) 
– select a lecture topic as soon as possible  
– ca. 20 minutes presentation on one of the lectures (second lecture 

of a topic) 
– short meeting right after todays lecture abut the details 
 

• Small project – during or after the course (for +3ECTS) 
– select a lecture topic 
– prepare a small simulator to support a mathematical model  or 

problem definition, the simulator could be used for demonstration 
– see examples under Course material (will be updated soon) 
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Traffic theory - Traffic 
models 

• Topics: 
– Traffic modeling – traffic objects 
– Markov processes recall 
– Traffic models: markovian and non-markovian models 

• Lecture material: 
– A. Adas, “Traffic models in broadband networks,” IEEE 

Communications Magazine, July 1997. 
– J. Roberts, “Traffic theory and the Internet,” IEEE Communications 

Magazine, January 2001. 
– V. Frost, B. Melamed, “Traffic modeling for telecommunications 

networks”, IEEE Communications Magazine, March 1994.   
– I. Kaj, „Stochastic modeling”, 5.2.2-5.3.1. 
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Teletraffic theory 
• Teletraffic theory:  

– to model dynamic resource sharing systems  
– to explain the traffic-performance relation 

 
Traffic demand 

Realized performance Shared resources 

• Traffic: arrival intensity, holding time, packet length 
(distribution or moments) 

• Resources: link bandwidth, router buffer, server capacity 
• Performance: utilization, loss, delay, delay variation, 

perceptual quality 

stochastic 

stochastic 

Theory of  
stochastic processes 

Can be stochastic! 

11 



Traffic modeling 

• To describe the network traffic demand 
• Statistical characterization 
• Traffic objects 

t 
• Flow (one instance of 

communication, 
TCP or UDP session) 

• Burst (Active/passive 
periods)  

• Sequence  of packets 
 

• Multiplexed packets 

— Skype call 
 
 

— Talk/listen 
 

— IP packets 
 

— IP packets  
at a router 
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Traffic modeling 

• Packet level – characteristics of the sequence of packets 
–  packet arrival process 

• according to some stochastic/deterministic arrival process (e.g. Poisson 
arrival at a router…) 

• saturated source model: there is always packet to send at the source 
– packet size distribution 

• Flow level (burst level is similar too, but rarely used): 
– flow arrival process  

• e.g., flows from all the laptops in a WLAN are generated according to a 
Poisson process  

– flow duration distribution  
– flow characteristics – how traffic is generated within a flow 
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Flow characteristics 
Models that describe the distribution of the sequence of packets for a 
flow level model 
  

time 

rate 

time 

• packet scale model 
– arrival process and packet size distribution 
– queuing theory 
– used typically in this course 
– may lead to very complex models on flow level 

 
• fluid models 

– transmission as a continuous stream 
– parameter: flow rate r(t) 
– system of differential equations 
– often more tractable on the flow level 

rate 

time 

burst 

packet 
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Flow types - Terminology 

• Flow  -  one instance of an application 
– Reasonable to classify according to application types 

• Elastic flow 
– The application requires the transmission of a given amount of 

information, some delay is acceptable – that is, transmission is 
elastic in time 

– E.g., file transfer over TCP 
– Flow characteristics is determined by the transport protocol (e.g., 

TCP) and the background traffic 
• Streaming flow 

– The application has strict delay limitations, late information is 
dropped 

– E.g., VoIP over UDP  
– Flow characteristics is determined by source characteristics (e.g., 

coding)  
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Traffic modeling 

• Should we use packet or flow level models in the 
following problems?  
– buffer dimensioning – sequence of packets 
– error control – loss of individual packets 

• PACKET LEVEL MODELS 
– video rate control  
– routing 

• FLOW LEVEL MODELS 
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Group work 

Should we use packet or flow level models in the following 
problems? In the case of flow level models, what kind of flow 
characterization is necessary? 
 
1. What is the probability that a packet collides and therefore needs 

to be retransmitted when using CSMA/CA protocol?  

2. Several Skype calls are using the same communication link. 
What is the utilization of the link (utilization={average rate of 
traffic} / {link transmission rate}) 

3. Several flows are multiplexed at a router with limited buffer. What 
is the probability that consecutive packets of a flow are dropped 
due to buffer overflow?  
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Mathematical modeling 

• Recall: Markov chains 
• Markovian traffic models 
• Home reading: non Markovian models 
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Recall – Markov chains  

0 1 2 

• Basic tools of queuing theory 
• Stochastic process 

– Discrete state space 
– Discrete or continuous time (change of state) 
– Markovian property: the future of the process does not depend on the 

past, only on the present 
 
 

• Discrete time Markov chains  
– State transition probability matrix 𝑷 = 𝑝𝑖𝑖  
– 𝑝𝑖+1 = 𝑝𝑖𝑷 

– If steady state exists, the stationary state probability is given by 𝑝 = 𝑝𝑷 
– Holding time of a state is geometric with parameter 1 − 𝑝𝑖𝑖 (memoryless) 
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Recall –   
Discrete time Markov chains  

0 1 0.9 
0.1 

0.2 
0.8 

 
• E.g., to model the packet loss process at a receiver 

– States: packet received or lost (0,1) 
– Captures the burstiness of the loss process (see Gilbert model later in 

the course) 
• If a packet is lost (state 1), the next one is lost with probability 𝑝11  
• If a packet is received (state 0), the next one is received with 

probability 𝑝00 
→ Packets lost in a raw ~𝐺𝐺𝐺(1 − 𝑝11), in average 1/ (1-𝑝11) 
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Recall –  
Continuous time Markov chains  

0 1 

 
• Continuous time Markov chains 

– State transition is possible at any time  
– State transition intensity matrix 𝐐 = 𝑞𝑖𝑖 , 𝑞𝑖𝑖 = −∑𝑞𝑖𝑖  

– 𝑝𝑝(𝑡) = 𝑝(𝑡)𝐐 

– If steady state exists, the stationary state probability is given by 0 = 𝑝𝐐 
– Holding time of a state is Exponential with parameter −𝑞𝑖𝑖, with mean 1/(−𝑞𝑖𝑖) 
– The exponential distribution is memoryless 
 

• E.g., good (0) or bad (1) state of a wireless channel 
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Markovian traffic modeling 

 
• Traditional telephone networks (from Erlang) 

– Poisson call arrival  
– exponential call duration    ⇒  nice Markovian models 
– constant rate        (M/M/*/*) 
 

• Similar models are possible for data networks 
– Poisson flow/packet arrival process 
– Exponential flow size (e.g., file length), packet size 
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Markovian traffic models 
• Poisson process: P{N(t)=n}=e- λt(λt)n/n! 
• Exponential distribution: P(X≤t)=1-e- λt , f(t)= λ e- λt  

 
• Recall – some basic results 

 
• Exponentially distributed interarrival and service times 
• Possion arrival: exponential interarrival time 
• Exponential distribution is memoryless – simple modeling 
• Tail function P(t>T)=e- λT  – exponential decay in t 

- e.g., the probability that a packet size is larger than T decreases 
exponentially in T. 

• Consecutive values (interarrival time, service time) are independent, 
therefore auto-covariance is zero 

•  Cov(k)=E[(Xi-E[X])(Xi+k-E[X])]=E[XiXi+k]- E[X]2=0 
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Markovian traffic models 

• Exponential interarrival and service times in queues 
(M/M/*/*) 

• Buffering is efficient, does not cause large delays 
 
• E.g, distribution of the number of users in an M/M/1  queue: 

p(n)=(1- ρ)ρn, ρ=λx  
• P(n≥N)=ρN – the probability that the queue length is at least 

N decays exponentially fast (exponential decay) 
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Markovian traffic models 
• Multiplexing is efficient, decreases the blocking probability 
• E.g, M/M/m/m 

• Multiplexing: higher aggregate arrival intensity → higher 
offered load 

• Blocking given by the Erlang-B curves 
 

 

Offered load (λ/µ) 

Blocking 
B(load,servers) 
 
B(20,30)≈1% 
B(40,60)≈0.1% 
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Markov modulated models 

• However, we know that packet arrivals are not 
Poissonian  
– the arrival rate changes with time (traffic control, coding) 
– immediate result, auto-covariance should not be zero: 

Cov(k)=E[(Xi-E[X])(Xi+k-E[X])]=E[XiXi+k]- E[X]2 ≠ 0 
 

• First step towards modeling traffic sources: 
• Markov-modulated traffic models  

– to capture “burstiness” (changing arrival rate) 
– while keeping the simplicity of modeling 
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Markov modulated models 
 

 
Packet scale models 
• Markov-modulated Poisson Process (MMPP) 

– A Markov chain is given that describes the state of the source 
– The packet generation process is Poisson in each state, but with 

different intensity (state i → λi) 
– Burstiness is captured by the state transitions in the Markov chain 

 
 

 
 

 
 

λ0 λ1 λ2 

State 0 State 0 State 1 Sate 1 

Exp(λ0) 

State 2 

Exp(λ1) Exp(λ2) 

State transitions governed by the Markov chain 
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Markov modulated models 
 

 
Packet scale models with two states 
 
 
 
• Interrupted Poisson Process (IPP)  

– Most simple MMPP 
– two states λ0=0, λ1=λ 

 
• ON-OFF model 

– two states, no arrivals in state 0 and fixed 
(d) packet interarrival times in state 1 
(deterministic arrival process) 

 

OFF ON 

α 

β 

Exp(β) Exp(β) Exp(α) Exp(α) 

Exp(λ) 

d 

Exp(β) Exp(β) Exp(α) Exp(α) 
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Markov modulated models 
 

• Fluid models 
– When individual units (e.g., packets) have little impact 

• Markov modulated fluid model 
– Traffic as a continuous stream with a parameterized flow rate 

(state i → ri) 
– Flow rate changes described by a Markov-chain 

 
 

 
• Semi Markov models and embedded Markov chains 

– If the state holding times are  
not Exponential 

– The sequence of states visited can be described with a discrete 
time Markov chain -> embedded Markov chain 

 
 

 
 

Exp(β) Exp(β) Exp(α) Exp(α) 
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Markovian traffic models 
Modeling voice traffic 

• Compare the average delay at a 
multiplexer, if 
– Real voice source packets are 

multiplexed in a simulator 
– Poisson arrival is assumed with the 

same average rate 
– 2 state MMPP model is used 
– Some advanced technique is used 
 

• Results:  
– Poisson arrival approximation 

underestimates delays (queue lengths) 
– MMPP seems to fit well at high load 

regime as well 
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1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

t 

r(t) 

Markovian traffic models 
 

 
• Auto-covariance and auto correlation function 

decays exponentially  
– Auto-covariance: Cov(t)=E[(Xi-E[X])(Xi+t-E[X])] 
– Auto-correlation: r(t)=Cov(t)/V[X] 
 

 
• Simplest example: on-off fluid model 

– The auto-correlation of the state of the system  
(on or off) 

– r(t)=e-(α+β)t 

 
 
• What does it mean: the system has some memory 

about the past, but only for a short time – (we 
introduce the concept of short range dependence 
later) 
 

 

OFF ON 

α 

β 
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Traffic modeling 

• Are Markovian traffic models enough to model network traffic 
sources? 

• Or do we need other models? 
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Modeling Internet traffic 
Read: J. Roberts, “Traffic theory and the Internet,”  
“As a first approximation, it is not unreasonable to assume that individual flows also 
occur as a Poisson process. To ignore the correlation between flow arrivals within the 
same session is not necessarily significant when the number of sessions is large. It is 
also true that results derived under the simple Poisson assumption are also often true 
under more general assumptions.  
The size of elastic flows (i.e., the size of the documents transferred) is extremely 
variable and has a so-called heavy-tailed distribution: most documents are small (a few 
kilobytes) but the number which are very long tend to contribute the majority of traffic. 
The precise nature of the size distribution is important in certain circumstances, such 
as describing the resulting self-similar packet arrival process, and can have a 
significant impact on performance in some multiplexing schemes.   
The duration of streaming flows also generally has a heavy-tailed distribution. 
Furthermore, the packet arrival process within a variable rate streaming flow is often 
self-similar.”  
 

33 



Modeling Internet traffic 
• Elastic flows - controlled by congestion control 

– e.g., file transfer 
– arrival of flows: independent activity of a large number of users → 

Poisson 
– size: heavy tail 
– traffic characteristics: extreme variability introduced by TCP and 

heavy tailed flows 
– self-similar packet arrival process 

• Streaming flows - determined by the source coding 
– arrival of flows: Poisson 
– duration: extreme variability, heavy tail 
– traffic characteristics (rate): often self-similar due to coding 

• Conclusion: 
– Simple Markovian or Markov Modulated source models may not 

work 
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Home reading 
 

Home reading for Wednesday next week: A. Adas, “Traffic Models in 
Broadband Networks”, IEEE Communications Magazine, July 1997  
• Markov and Embedded Markov models in detail  

– including the MMPP example for video coding 
• Regression models are not part of the course material, but are 

interesting reading 
• Long-range dependent traffic models, not including fractional 

ARIMA and fractional Brownian Motion 
• See “Reading Assignment” on the course web 
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End of first lecture. 
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Traffic modeling - recall 
• Teletraffic theory – performance triangle 
• Traffic modeling 

• Traffic objects: flow (elastic, streaming), burst, packet 
• Modeling levels:  

– Packet level: arrival process, packet length distribution 
– Flow level: arrival process, flow length distribution, flow characteristics (packet 

scale or fluid) 
• Classical traffic models 

• Poisson arrival, exponential service time (packet, flow length) – M/M/*/* 
– Simple model 
– Exponential decay (interarrival time, service time, queue length),  

no time correlation of input parameters 
– Efficient multiplexing, efficient buffering 

• Markov modulated traffic models 
• Poisson arrival, exponential service time (packet, flow length) – M/M/*/* 

– Still tractable model 
– Captures burstiness, auto-covariance is not zero, but decays Exponentially 
– Seem to model well the effect of burstiness on buffering 
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Discrete time Markov chains  

0 1 0.9 
0.1 

0.2 
0.8 

 
• E.g., to model the packet loss process at a receiver 

– States: packet received or lost (0,1) 
– Captures the burstiness of the loss process (see Gilbert model later in 

the course) 
• If a packet is lost (state 1), the next one is lost with probability 𝑝11  
• If a packet is received (state 0), the next one is received with 

probability 𝑝00 
→ Packets lost in a raw ~𝐺𝐺𝐺(1 − 𝑝11), in average 1/ (1-𝑝11) 
→ Steady state probability of receiving or loosing a packet:  

 {𝑝0, 𝑝1} = {𝑝0, 𝑝1}
𝑝00 𝑝01
𝑝10 𝑝11  

{𝑝0, 𝑝1} = {𝑝0, 𝑝1} 0.9 0.1
0.2 0.8  

– What is the probability that a packet gets lost  (𝑝1)? 
– What is the average number of packets lost in a raw? 

38 



 
Continuous time Markov chains  

0 1 

 
• Continuous time Markov chains 

– State transition is possible at any time  
– State transition intensity matrix 𝐐 = 𝑞𝑖𝑖 , 𝑞𝑖𝑖 = −∑𝑞𝑖𝑖  

– 𝑝𝑝(𝑡) = 𝑝(𝑡)𝐐 

– If steady state exists, the stationary state probability is given by 0 = 𝑝𝐐 
– Holding time of a state is Exponential with parameter −𝑞𝑖𝑖, with mean 1/(−𝑞𝑖𝑖) 
– The exponential distribution is memoryless 
 

• E.g., good (0) or bad (1) state of a wireless channel 
• Steady state probabilities: 

 {0,0} = {𝑝0, 𝑝1} −3  3
2 −2  

• What is the probability that the system is in state 1? 
• What is the average holding time of bad state? 
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MMPP traffic models 
Example 

A traffic source is modeled as follows: 
• 2 state MMPP 
• Transition intensity q12=0.5, q21=0.5 (transitions per sec) 
• Transmission rates:  λ1=100 packets/s and λ2=400 packets/s 
• Packet size: 500Bytes 

 
1. Draw the Markov-chain, give all the parameters, give the Q matrix 

 
2. What is the mean time in states 1 and 2 respectively? 
3. What is the probability that the source is in state 1  (state 2) at an arbitrary 

point of time? 
 

4. What is the average packet interarrival time in state 1? 
5. What are the transmission rates in the two states in bit per sec? 
6. What is the average transmission rate? 

 
7. If 5 such sources are multiplexed, what is the probability that the 

instantaneous rate is 8Mbps or larger? 
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Heavy-tail distributions, self-similarity, and 
long-range dependence 

• What are the limitations of Markovian models? 
• Example 1 

– Telephone call holding time measurements (holding time, s) 
• Exponential assumption: P(s>x)=e-µx 

• Statistics (for large s): P(s>x)~x-α, α>0 
– Decay is slower than exponential: heavy-tail distribution 

 

4 6 8 10

0.02

0.04

0.06

0.08

0.1

0.12

Exp 

1/xa 

Tail function 
P(s>x) f(s) 

s x 

Tail function 
P(s>x) 

Holding time, x 
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Ethernet measurement      Poisson 

• Self-similar nature of packet arrival process 

Heavy-tail distributions, self-similarity, and 
long-range dependence 

• Example 2 
– Packet arrivals in 40 hours Ethernet traffic (Bellcore ’89) 
– Number of packet arrivals in increasing time intervals 
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Heavy-tail distributions, self-similarity, and 
long-range dependence 

• Example 3 – the effect of (long range 
dependent) self similarity 
 

• LRD-SS source characteristics changes 
the network performance significantly.  
– E.g., mean queue-length at 

routers/multiplexers 
– Blocking and loss probabilities 

• Therefore  
– we have to take it into account at the 

performance evaluation 
– have to understand how it emerges 

and whether it is possible to avoid it  
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• We have to address the followings 
– what is heavy-tail distribution 
– what is self-similarity (and related: what is long range dependence) 
– how are these related to each other 
– when is it possible to apply Markovian models 

 
• First a bit of group work 

 
 
 
 

Heavy-tail distributions, self-similarity, and 
long-range dependence 
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Heavy-tail distributions 
• Exponential distribution: P(X>x)=e-µx 

• Heavy-tail distribution: 
– P(X>x)~x-a, x→∞, a>0  
– the asymptotic shape is hyperbolic 

• Pareto distribution: often used heavy tail distribution 
(e.g., for file size length): 
– f(x)= aba/(xa+1),  

• a>0 (shape),  
• b is the minimum possible value  

(base) 
– P(X>x)=1-F(x)=(b/x)a   
– E[X]=ab/(a-1) for a>1  

otherwise the mean is not finite 
 
 

P(s>x), b=1, a=1.5, 2 

Pareto 

Exp with the same mean 
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Heavy-tail distributions – 
Waiting for the bus revisited 

• Distribution of remaining service time (remaining time to wait for the bus…) 
 

𝑅𝑡 𝑥 = 𝑃 𝑋 > 𝑥 + 𝑡 𝑥 > 𝑡 =
𝐹�(𝑥 + 𝑡)
𝐹�(𝑡)

 

 
• Exponential distribution: 𝑃 𝑋 > 𝑥 = 𝐺−𝜇𝜇 , 𝑅𝑡 𝑥 = 𝐺−𝜇𝜇 (the memoryless property) 
 

• Pareto distribution: 
 

𝑓 𝑥 =
𝑎𝑏𝑎

𝑥𝑎+1
, P X > x =

𝑏
𝑥

𝑎

 

𝑅𝑡 𝑥 =

𝑏
𝑥 + 𝑡

𝑎

𝑏
𝑡

𝑎 = 1 +
𝑥
𝑡

−𝑎
 

• That is, the remaining service time increases with t, the time already spent on 
service! 
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Heavy-tail distributions 

• Why is heavy-tail a problem? 
• Can be proved:  

– Superposition of ON-OFF processes where the distribution 
of the ON periods is heavy tailed (e.g., Pareto) gives long-
range dependent self-similar process  
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Long-range dependence 
• Consider Xi stochastic process, i=1,2,3 (discrete time) 

• Discrete process, samples from a continuous time process 
or integral over the interval 

• E[X], V[X] finite  
• Auto-covariance: Cov(k)=E[(Xi-E[X])(Xi+k-E[X])] 
• Auto-correlation: r(k)=Cov(k)/V[X] 

• Short-range dependent: 
• ∑ 𝑟 𝑘 < ∞∞

𝑘=1 : the consecutive samples are correlated, but 
the correlation decreases fast with k 

• Long-range dependent: 
• ∑ 𝑟 𝑘 = ∞∞

𝑘=1 : the consecutive samples are correlated, the 
correlation is preserved for long period. 

• Note: long-range dependence is an asymptotic definition for 
large lags (k). 
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Long-range dependence 
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• Short-range dependent: 
– ∑ 𝑟 𝑘 < ∞∞

𝑘=1 : the consecutive samples are correlated, but the 
correlation disappears fast 

• Long-range dependent: 
– ∑ 𝑟 𝑘 = ∞∞

𝑘=1 : the consecutive samples are correlated, the correlation 
can be preserved for long period. 
 

• MMPP is short range dependent. E.g., on-off fluid: 
 
 
 
 

• So, what is the relationship between long range dependence and 
self-similarity? 
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Self-similarity 
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• Consider Xi stochastic process, i=1,2,3 (discrete time) 
• E[X], V[X] finite  

• (Second order) Self-similar: auto-correlation rm(k)=r(k), for all m and k 
• Asymptotically self-similar: if above true for large m and k 

time unit: 0.01s → X1,X2… 

time unit: 10s → X1
(1000), X2

(1000)… 
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Self-similarity and long-range 
dependence (LRD) 

• Second-order self-similar: rm(k)=r(k), for all m and k 
• r(k) has specific form (can be proved): 
 
 
• H: Hurst parameter, the parameter of a self-similar process 
• Self-similarity and LRD 

 
 
 
 
→ A self-similar process is LRD if 0.5<H<1. This is the interval 
when SS makes trouble. 

• Often the terms self-similarity and long-range dependence are used 
for the same thing. 
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Heavy tail, self-similarity (SS) and long-
range dependence (LRD) 

LRD 

SS 

• LRD-SS is the “problematic 
area 

• Multiplexed heavy tail on-off  
sources give LRD-SS process 
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Markovian vs. SS/LRD 
models 
How should we choose traffic model for performance 
evaluation? 
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Examples 

Fukuda, K.,  Takayasu, M., Takayasu, H., A cause of self-
similarity in TCP traffic, International Journal of Communication 
Systems, v 18, n 6, Aug. 2005, p 603-17 
 
Abstract: We analyze the statistical properties of aggregated 
traffic flows generated by TCP, in order to clarify a possible cause 
of self-similarity in Internet traffic. Using ns-2 simulation… The 
main contribution of our work is to show that TCP itself contains a 
mechanism for generating self-similarity… 
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Examples 

Tsybakov, B. , Georganas, N.D., Overflow and losses in a 
network queue with a self-similar input, Queueing Systems, 
Theory and Applications, 2000. 
 
Abstract: …considers a discrete time queuing system that models 
a communication network multiplexer which is fed by a self-similar 
packet traffic. The model has … an input traffic which is an 
aggregation of independent source-active periods having Pareto-
distributed lengths and arriving as Poisson batches. The new 
asymptotic upper and lower bounds to the buffer-overflow and 
packet-loss probabilities  are obtained.  
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Examples 

Kasahara, S., Internet traffic modeling: Markovian approach to 
self-similar traffic and prediction of loss probability for finite 
queues, IEICE Transactions on Communications, 2001. 
 
Abstract: It has been reported that IP packet traffic exhibits self-
similar nature and causes the degradation of network 
performance… However recent studies have revealed that the loss 
probability of finite queuing systems can be well approximated by 
the Markovian input models. This paper studies the time-scale 
impact on the loss probability of MMPP/D/1/K system where the 
MMPP is generated so as to match the variance of the self-similar 
process over specified time-scales.  
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Markovian vs. SS/LRD 
models 

• How should we choose traffic model for performance evaluation? 
• SS/LRD 

– complex models, possible to use for simulation but mathematical 
models are not that tractable  

– LRD captures asymptotic behavior but not short time characteristics 
• Markovian models 

– can capture correlations on arbitrary – finite – time scale 
– easier to use in mathematical models 

• We have to choose models according to the dominant time scale 
we consider. 
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Summary (1/2) 

• Network traffic modeling 
– Flows, bursts and packets 
– Elastic and streaming flows 
– Packet scale and fluid models for flow characterization 

• Markovian traffic models 
– Markov modulated traffic models 
– The rate is modulated by a Markov chain to capture 

burstiness 
– Can describe short term correlation 
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Summary (2/2) 
• Long-range dependence, self-similarity and heavy-tail 

– Asymptotic characteristics 
– Heavy-tail: the tail function of the distribution has only hyperbolic 

decrease: P(s>x)~x-a, x→∞,  
multiplexing heavy-tail flows leads to self-similarity 

– Long-range dependence: correlation is preserved over long 
timescales: ∑ 𝑟 𝑘 = ∞∞

𝑘=1  
– Self-similarity: the correlation is preserved irrespective of time 

aggregation: rm(k)=r(k) 
– Self similarity is characterized by H, the Hurst parameter, and 

the SS process is LRD if 0.5<H<1 
– LRD-SS flows lead to inefficient multiplexing and long queues 

59 


	EP2210 – Performance evaluation of communication networks
	EP2210 – Performance evaluation of communication networks
	Topics
	Topics
	Course setup
	Requirements
	Requirements
	Grading
	Requirements – graduate students
	Traffic theory - Traffic models
	Teletraffic theory
	Traffic modeling
	Traffic modeling
	Flow characteristics
	Flow types - Terminology
	Traffic modeling
	Group work
	Mathematical modeling
	Recall – Markov chains 
	Recall –  �Discrete time Markov chains 
	Recall – �Continuous time Markov chains 
	Markovian traffic modeling
	Markovian traffic models
	Markovian traffic models
	Markovian traffic models
	Markov modulated models
	Markov modulated models�
	Markov modulated models�
	Markov modulated models�
	Markovian traffic models�Modeling voice traffic
	Markovian traffic models�
	Traffic modeling
	Modeling Internet traffic
	Modeling Internet traffic
	Home reading
	Slide Number 36
	Traffic modeling - recall
	�Discrete time Markov chains 
	�Continuous time Markov chains 
	MMPP traffic models�Example
	Heavy-tail distributions, self-similarity, and long-range dependence
	Heavy-tail distributions, self-similarity, and long-range dependence
	Heavy-tail distributions, self-similarity, and long-range dependence
	Slide Number 44
	Heavy-tail distributions
	Heavy-tail distributions – Waiting for the bus revisited
	Heavy-tail distributions
	Long-range dependence
	Long-range dependence
	Self-similarity
	Self-similarity and long-range dependence (LRD)
	Heavy tail, self-similarity (SS) and long-range dependence (LRD)
	Markovian vs. SS/LRD models
	Examples
	Examples
	Examples
	Markovian vs. SS/LRD models
	Summary (1/2)
	Summary (2/2)
	Heavy tail plots 
	Heavy tail plots 
	Long-range dependence
	Self similarity

