
ID1018 Programmering I Exam – extra part: solution by Fadil Galjic 17 aug 2015

1

Exam – extra part: solution

Tasks: solutions
Task 1 (4 points + 3 points)
a) (4 points)

public static void sort (int[] numbers)
{
 int lastPos = numbers.length - 1;
 for (int pos = lastPos; pos > 0; pos--)
 {
 for (int p = 0; p < pos; p++)
 {
 if (numbers[p] > numbers[p + 1])
 {
 int e = numbers[p];
 numbers[p] = numbers[p + 1];
 numbers[p + 1] = e;
 }
 }
 }
}

b) (3 points)

The worst case appears when the integer sequence is already sorted in reverse. In this case there will be n - 1 element
exchanges in the first pass of the main loop, n - 2 element exchanges in the second pass, and so on. In the last pass through
the main loop there will be 1 exchange. The total number of exchanges is:

 (n – 1) + (n – 2) + … + 2 + 1

This means that the worst case time complexity of the algorithm, in terms of element exchanges, can be given by the
following complexity function:

w(n) = n (n – 1) / 2

This function can also be written like this:

w(n) = n2/2 – n/2

The term n2 dominates for sufficiently large values of n, and therefore:

w(n) ϵ Θ(n2)

In the worst case the algorithm is quadratic, in terms of element exchanges.

Task 2 (3 points)

Definition: the set O(n log2 n)
A complexity function f(n) belongs to the set O(n log2 n) if and only if there exists a real, positive constant c and a non-
negative integer N, for which the following inequality holds for all n ≥ N:

f (n) ≤ c n log2 n

Task 3 (4 points + 3 points + 3 points)
a) (4 points)

ID1018 Programmering I Exam – extra part: solution by Fadil Galjic 17 aug 2015

2

 nextNode nextNode nextNode nextNode

// add appends a given element to the end of the list
public void add (E element)
{
 Node newNode = new Node (element);

 if (firstNode == null)
 firstNode = newNode;
 else
 {
 Node node = firstNode;
 while (node.nextNode != null)
 node = node.nextNode;
 node.nextNode = newNode;
 }
}

b) (3 points)

// get returns the element at a given position
public E get (int index)
{
 Node node = firstNode;
 for (int i = 0; i < index; i++)
 node = node.nextNode;
 return node.element;
}

c) (3 points)

 element element element element

firstNode

list

A

B

C

D

	Exam – extra part: solution
	Tasks: solutions
	Task 1 (4 points + 3 points)
	Task 2 (3 points)
	Task 3 (4 points + 3 points + 3 points)

