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Abstract—Channel estimation and precoding in hybrid analog-
digital millimeter-wave (mmWave) MIMO systems is a funda-
mental problem that has yet to be addressed, before any of the
promised gains can be harnessed. For that matter, we propose a
method (based on the well-known Arnoldi iteration) exploiting
channel reciprocity in TDD systems and the sparsity of the
channel’s eigenmodes, to estimate the right (resp. left) singular
subspaces of the channel, at the BS (resp. MS). We first describe
the algorithm in the context of conventional MIMO systems,
and derive bounds on the estimation error in the presence of
distortions at both BS and MS. We later identify obstacles
that hinder the application of such an algorithm to the hybrid
analog-digital architecture, and address them individually. In
view of fulfilling the constraints imposed by the hybrid analog-
digital architecture, we further propose an iterative algorithm for
subspace decomposition, whereby the above estimated subspaces,
are approximated by a cascade of analog and digital precoder
/ combiner. Finally, we evaluate the performance of our scheme
against the perfect CSI, fully digital case (i.e., an equivalent con-
ventional MIMO system), and conclude that similar performance
can be achieved, especially at medium-to-high SNR (where the
performance gap is less than 5%), however, with a drastically
lower number of RF chains (∼ 4 to 8 times less).

Keywords—Millimeter wave MIMO systems, sparse channel esti-
mation, hybrid architecture, hybrid precoding, subspace decompo-
sition, Arnoldi iteration, subspace estimation, echo-based channel
estimation.

I. INTRODUCTION

With the global volume of mobile data expected to increase
by an order of magnitude between 2013 and 2019, and the
volume corresponding to mobile devices outweighing that
of all other devices [1], mobile network operators have the
monumental task of meeting this exponentially increasing
demand. Given that spectrum is a scarce and precious resource,
future communication systems have to exhibit unparalleled
spectral efficiency. Though earlier results date back to [2],
[3], communication systems in the millimeter wave (mmWave)
spectrum have been receiving growing interest over the past
years. mmWave communication systems have the distinct
advantage of exploiting the huge amounts of unused (and
possibly unlicensed) spectrum in those bands - around 200
times more than conventional cellular systems. Moreover,
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the corresponding antennae size and spacing become small
enough, such that tens-to-hundreds of antennas can be fitted
on conventional hand-held devices, thereby enabling gigabit-
per-second communication.

However, the large number of RF chains required to drive
the increasing number of antennas, inevitably incurs a tremen-
dous increase in power consumption (namely by the analog-
to-digital converters), as well as added hardware cost. One
elegant and promising solution to remedy this inherent problem
is to offload part of the precoding / processing to the analog
domain, via analog precoding (resp.combining), i.e., a network
of phase shifters to linearly process the signal at the BS (resp.
MS). This so-called problem of analog and digital co-design
for beamforming and precoding in low-frequency regime was
first investigated in [4], [5]. This architecture was later studied
within the context of higher frequency (mmWave) systems in
[6]–[8] - under the name of hybrid precoding / architecture
- for the precoding problem. A similar setup for the case of
beamforming was considered in [9]–[11].

However, several fundamental challenges have to resolved
before any of the promised gains can be harnessed, namely,
estimating the (large) mmWave channel, and designing the
analog / digital precoders and combiners accordingly. We
underline the fact that classical training schemes developed
for MIMO systems are not applicable for that particular case.
Moreover, note that our proposed technique encompasses both
beamforming and precoding, i.e., it does not depend on the
number of streams.

After a series of approximations to the mutual information,
and taking into account precoding only, [6] derived an optimal-
ity condition relating the analog and digital precoders to the
optimal unconstrained precoder (i.e., the right singular vectors
of the channel), by assuming full CSI at both the BS and MS.
This assumption was later relaxed in [7] where an algorithm
for estimating the dominant propagation paths was proposed,
based on the previously proposed concept of hierarchical
codebooks sounding in [10], [11]. However, the algorithm
requires a priori knowledge of the number of propagation paths
(i.e. the propagation environment), its performance is affected
by the sparsity level of the channel, and exhibits relatively
elevated complexity. Finally, it appears rather inefficient to
estimate the entire channel, while only a few eigenmodes
are needed for transmission: this is particularly relevant in
mmWave MIMO channels, since the majority of eigenmodes
have negligible power.

The approach we present here attempts to address the above
limitations. The proposed algorithm is based on the well known
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Fig. 1: Hybrid Analog-Digital MIMO system architecture

Arnoldi Iteration, exploits channel reciprocity inherent in TDD
MIMO systems to gradually build an orthonormal basis for
the corresponding Krylov subspace, and directly estimates the
desired left / right singular modes of the channel, rather than
the entire channel. We then propose an iterative method for
subspace decomposition, to approximate the estimated right
(resp. left) singular subspace by a cascade of analog and
digital precoder (resp. combiner), while taking into account
the hardware constraints of this so-called hybrid analog-digital
architecture. The subspace estimation (SE) algorithm is based
on BS-initiated echoing, whereby the BS sends along some
beamforming vector, and the MS echoes its received signal
back to the BS (using amplify-and-forward), thereby enabling
the BS to obtain an estimate of the effective uplink-downlink
channel. We first detail the algorithm in the context of con-
ventional MIMO, taking into account distortions in the the
system (e.g., noise, or other disturbances), derive bounds on
the estimation error, and highlight its desirable features. We
then adapt its structure, to fit the many operational constraints
dictated by the hybrid analog-digital architecture. Although the
main results of the paper were earlier presented in [12], we
provide in this work an in-depth look at our proposed methods,
and derive several performance results.

In the following, we use bold upper-case letters to denote
matrices, and bold lower-case letters denote vectors. Further-
more, for a given matrix AAA, [AAA]i:j denotes the matrix formed
by taking columns i to j, of AAA, tr(AAA) denotes its trace,
‖AAA‖2F its Frobenius norm, |AAA| its determinant,AAA† its conjugate
transpose. [AAA]i,j = ai,j denotes element (i, j) in AAA, aaai its ith
column, and [aaa]i = ai element i in vector aaa. [AAA]SL and [AAA]U
represent the matrix formed by the strictly lower and upper
triangular matrix of a square matrixAAA, respectively. IIIn denotes
the n×n identity matrix, diag(xxx) is a diagonal matrix with ele-
ments of xxx on its diagonal, <(x) the real part of x, qr(UUU ) is the
QR decomposition of UUU . Finally, we let {n} , {1, ..., n}, and
Sp,q =

{
XXX ∈ Cp×q | |XXXij | = 1/

√
p , ∀(i, k) ∈ {p} × {q}

}
.

II. SYSTEM MODEL

A. Signal Model
Assume a single user MIMO system with M and N anten-

nas at the BS and MS, respectively, where each is equipped
with r RF chains, and sends d independent data streams (where
we assume that d ≤ r ≤ min(M,N)). The downlink (DL)
received signal is given by

yyy(r) = HHHFFFGGGxxx(t) +nnn(r) (1)

where HHH ∈ CN×M is the complex channel - assumed to
be slowly block-fading, FFF ∈ CM×r is the analog precoder,

GGG ∈ Cr×d the digital precoder, yyy(r) the N -dimensional signal
at the MS antennas, xxx(t) is the d-dimensional transmit signal
with covariance matrix E[xxx(t)xxx(t)

†
] = IIId and nnn(r) is the

AWGN noise at the MS, with E[nnn(r)nnn(r)
†
] = σ2

(r)IIIN . Note
that (t) and (r) subscripts/superscripts denote quantities at the
BS and MS, respectively, rather than actual number. Both
the analog precoder and combiner are constrained to have
constant modulus elements (since the latter represent phase
shifters), i.e., FFF ∈ SM,r and WWW ∈ SN,r (also referred to as the
constant-modulus or constant-envelope constraint). Moreover,
the gain that transmit symbol x(t)i experiences is assumed to
be bounded, i.e., ‖FFFgggi‖22 ≤ ρ2 , ∀ i ∈ {d} (where we assume
that ρ = 1 w.l.o.g.) resulting in the following constraint,
‖FFFGGG‖2F ≤ d. With that in mind, the received signal after
filtering in the DL is given as,

x̃xx = UUU†WWW †yyy(r) = UUU†WWW †HHHFFFGGGxxx(t) +UUU†WWW †nnn(r) (2)

where WWW ∈ CN×r and UUU ∈ Cr×d are the analog and digital
combiners, respectively1. We also assume a TDD system,
where channel reciprocity holds. Finally, we denote the SVD
of HHH as,

HHH = [ΦΦΦ1, ΦΦΦ2]

[
ΣΣΣ1 000

000 ΣΣΣ2

][
ΓΓΓ†1

ΓΓΓ†2

]
= ΦΦΦ1ΣΣΣ1ΓΓΓ

†
1 + ΦΦΦ2ΣΣΣ2ΓΓΓ

†
2 (3)

where ΓΓΓ1 ∈ CM×d and ΦΦΦ1 ∈ CN×d are unitary, and ΣΣΣ1 =
diag(σ1, ..., σd) is diagonal with the d largest singular values
of HHH (in decreasing order).

B. Motivation

We use the following expression as a performance metric,

R = log2

∣∣∣IIId +HHHeHHH
†
e(σ

2
(r)UUU

†WWW †WWWUUU)−1
∣∣∣ (4)

where HHHe = UUU†WWW †HHHFFFGGG, 1
σ2
(r)

, SNR, and we assume
uniform power allocation (no waterfilling). As we will discuss
below, the value of the expression in (4) is related to achievable
rates over the considered hybrid analog-digital MIMO link; in
particular R becomes an achievable rate in the scenario that
both the BS and MS are provided perfect knowledge of HHH .

Using Hadamard’s inequality, it can be easily verified that
the optimal FFF ,GGG,WWW,UUU that maximize R in (4), are the ones
that diagonalize the effective channel HHHe, i.e.,

R? , max R(FFF ,GGG,WWW,UUU) = log2

∣∣IIId + ΣΣΣ2
1

∣∣ (5)
Following the above discussion on the achievability of R, R?
is the maximum achievable rate over the precoders and com-
biners, whenHHH is known to both BS and MS. Similarly to [13]
we formulate our problem in terms of the distortion between
R? and R (albeit the latter has to be instantaneous). Moreover,
it can be verified that the optimal FFF ,GGG,WWW,UUU that achieve R?,
are such that FFFGGG ⊆ span(ΓΓΓ1) and WWWUUU ⊆ span(ΦΦΦ1), i.e. there
is no loss in generality by assuming the latter.

1Similarly, exploiting channel reciprocity, the uplink received signal is given
by yyy(t) = HHH†WWWUUUxxx(r) +nnn(t) where yyy(t) is the M -dimensional signal at the
BS and nnn(t) is the AWGN noise at the BS, such that E[nnn(t)nnn(t)† ] = σ2

(t)
IIIN
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Proposition 1. For the distortion D , R? −R, the following
holds,

D ≤
d∑
i=1

(1 + σ2
i ) + koε

2
(
‖ΓΓΓ1 −FFFGGG‖2F + ‖ΦΦΦ1 −WWWUUU‖2F )

)
/2

Proof: Refer to Appendix A
This result does imply that by finding FFFGGG (resp. WWWUUU ) that

“best” approximate ΓΓΓ1 (resp. ΦΦΦ1), we would be minimizing
a bound on the distortion. However, since we assume that no
channel information is available at neither the BS, nor the
MS, our aim is firstly to obtain an estimate of the subspaces
in question, i.e. Φ̃ΦΦ1 ≈ ΦΦΦ1 at the MS, and Γ̃ΓΓ1 ≈ ΓΓΓ1 at the
BS. We then propose methods that optimize the precoders and
combiners to accurately approximate the estimated subspaces,
by providing means to solve problems such as ‖Γ̃ΓΓ1−FFFGGG‖2F and
‖Φ̃ΦΦ1−WWWUUU‖2F (while taking into consideration the constraints
inherent to the hybrid analog-digital architecture).

III. EIGENVALUE ALGORITHMS AND SUBSPACE
ESTIMATION

A. Subsapce Estimation vs. Channel Estimation
The aim of subspace estimation (SE) methods in MIMO sys-

tems is to estimate a predetermined low-dimensional subspace
of the channel, required for transmission. We illustrate this in
the context of conventional MIMO systems, i.e., where pre-
coders/combiners are fully digital. For the sake of exposition,
we start with a simple toy example, where noiseless single-
stream transmission is assumed (and ignoring any physical
constraints). The BS selects a random unit-norm beamforming
vector, ppp1, and then sends ppp1x

(t), where x(t) = 1. The
received signal, qqq1 = HHHppp1, is echoed back to the BS (in
effect, this implies that the signal is complex conjugated before
being sent), in an Amplify-and-Forward (A-F) like fashion.2
Then, exploiting channel reciprocity, the received signal at
the BS is first normalized, i.e., ppp2 = HHH†qqq1/‖HHH†qqq1‖2 =
HHH†HHHppp1/‖HHH†HHHppp1‖2, and then echoed back to the MS. This
simple procedure is done iteratively, and the resulting se-
quences {pppl} at the BS, and {qqql} at the MS, are defined as
follows,

pppl+1 = HHH†HHHpppl/‖HHH†HHHpppl‖2; qqql+1 = HHHpppl (6)
It was noted in [14] that using the Power Method (PM),
one can show that as l → ∞, pppl → γγγ1 and qqql → σ1φφφ1,
implying that this seemingly simple “ad-hoc” procedure will
converge to the maximum eigenmode transmission. In the
latter work, the authors also generalized the latter method to
multistream transmission, i.e., by estimating ΓΓΓ1 and ΦΦΦ1, using
the Orthogonal / Subspace Iteration (which was dubbed Two-
way QR (TQR) in [14], [15]).

We note that SE schemes such as the ones described above,
offer the following distinct advantage over classical pilot-based
channel estimation: in spite of the large number of transmit and
receive antennas, SE methods can estimate the desired left /
right singular subspaces with a relatively low communication

2This mechanism for MIMO subspace estimation, where the MS echoes
back the transmitted signal using A-F, was first reported in [14].

Set m (m ≤M ); qqq1 = random unit-norm ; QQQ = [qqq1]
for l = 1, 2, ...,m do

1.a pppl = AAAqqql
1.b tm,l = qqq†mpppl, m = 1, . . . , l

2. rrrl = pppl −
∑l
m=1 tm,lqqqm

3. tl+1,l = ‖rrrl‖2 ; if (tl+1,l = 0) stop
4. QQQ = [QQQ, qqql+1 = rrrl/tl+1,l]

end for
TABLE I: Arnoldi Procedure

overhead, when the latter have small dimension (relative to
the channel dimensions). Consequently, subspace estimation
is much more efficient than channel estimation, especially in
large low-rank MIMO systems such as mmWave channels
(since the latter estimates the desired low-dimensional sub-
space instead of the whole channel). For the reason above, our
proposed algorithm falls under the umbrella of SE methods.
We first describe this algorithm in the context of “classical”
MIMO systems, and later adapt it to the hybrid analog-digital
architecture.

B. Arnoldi Iteration for Subspace Estimation
Despite the fact that Krylov subspace methods (such as

the Arnoldi and Lanczos Iterations for symmetric matrices)
are among the most common methods for eigenvalue prob-
lems [16], their use in the area of channel / subspace esti-
mation is limited to equalization for doubly selective OFDM
channels [17], and channel estimation in CDMA systems [18].
Algorithms falling into that category iteratively build a basis
for the Krylov subspace, Km = span{xxx,AAAxxx, ...,AAAm−1xxx}, one
vector at a time. We use one of many variants of the so-called
Arnoldi Iteration / Procedure, and a simplified version of the
latter is shown in Table I (as presented in [19]). The algorithm
returnsQQQm = [qqq1, . . . , qqqm] ∈ CM×m and an upper Hessenberg
matrix TTTm ∈ Cm×m, such that

QQQ†mAAAQQQm = TTTm, QQQ
†
mQQQm = IIId.

It can be shown that the algorithm iteratively buildsQQQm, an or-
thonormal basis for Km (when roundoff errors are neglected),
and that QQQ†mAAAQQQm = TTTm implying that the eigenvalues of TTTm
are the same as the eigenvalues of AAA. The main idea behind
this process is to find the desired eigenpairs of AAA, by finding
the eigenpairs of TTTm. Our goal in this section is to first apply
the above algorithm to estimate the d largest eigenvectors of
AAA = HHH†HHH at the BS (which are exactly ΓΓΓ1), by implementing
a distributed version of the Arnoldi process, that exploits the
channel reciprocity inherent to TDD systems. Moreover, we
extend the original formulation of the algorithm to incorporate
a distortion variable (representing noise, or other distortions,
as will be done later).

It becomes clear at this stage, that the BS requires knowl-
edge of the sequence {HHH†HHHqqql}ml=1, needed for the matrix-
vector product in step 1 (Table I): the latter can be accom-
plished by obtaining an estimate pppl, of HHH†HHHqqql, l ∈ {m}.
Without any explicit CSI at neither the BS nor the MS,
we exploit the reciprocity of the medium to obtain such an
estimate, via BS-initiated echoing: the BS sends qqql over the
DL channel, the MS echoes back the received signal in an
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procedure Γ̃ΓΓ1 = SE-ARN (HHH , d)
Set m (m ≤M ); Random unit-norm qqq; QQQ = [qqq1]
for l = 1, 2, ...,m do

// BS-initiated echoing: estimate HHH†HHHqqql
1.a sssl = HHHqqql +www

(r)
l

1.b pppl = HHH†sssl +www
(t)
l

// Gram-Schmidt orthogonalization
2.a tm,l = qqq†mpppl ,∀ m = 1, . . . , l

2.b rrrl = pppl −
∑l
m=1 qqqmtm,l

2.c tl+1,l = ‖rrrl‖2
// Update QQQ
3.a QQQ = [QQQ, qqql+1 = rrrl/tl+1,l]

end for
// Compute Γ̃ΓΓ1

TTTm = Θ̃ΘΘΛ̃ΛΛΘ̃ΘΘ
−1

Γ̃ΓΓ1 = QQQmΘ̃ΘΘ1:d

Γ̃ΓΓ1 = qr(Γ̃ΓΓ1)
end procedure

TABLE II: Subspace Estimation using Arnoldi Iteration (SE-
ARN)

A-F like fashion, over the uplink (UL) channel (following the
process proposed in [20], and detailed in Sect. III-A), i.e.,

DL : sssl = HHHqqql +www
(r)
l

UL : pppl = HHH†sssl +www
(t)
l = HHH†HHHqqql +HHH†www

(r)
l +www

(t)
l

= HHH†HHHqqql + w̃wwl (7)

where sssl is the received signal in the DL, www(t)
l and www(r)

l are
distortions at the BS and MS, respectively (representing noise
for example).

After the echoing phase, the BS has an estimate, pppl, of
HHH†HHHqqql, as seen from (7). The remainder of the algorithm
follows the conventional Arnoldi Iteration, and is shown in
the Subspace Estimation using Arnoldi (SE-ARN) procedure
(Table II). In addition to TTTm at the output of the algorithm,
we define the matrices, T̃TTm, W̃WWm and ẼEEm, as follows,

[T̃TTm]i,l =


qqq†iHHH

†HHHqqql, if l ≤ m, ∀i ≤ l
‖rrrl‖2, if l < m, i = l + 1

0, otherwise

W̃WWm = [w̃ww1, ..., w̃wwm], ẼEEm = [QQQ†mW̃WWm]SL (8)

where T̃TTm is the upper Hessenberg matrix obtained by the
conventional Arnoldi process, i.e., when the distortion w̃wwl
is ignored. At the output of the SE-ARN procedure, the
desired eigenpairs of HHH†HHH are approximated by that of TTTm
as follows. Let TTTm = Θ̃ΘΘΛ̃ΛΛΘ̃ΘΘ

−1
be eigenvalue decomposition

of TTTm, where ΘΘΘ is the (possibly non-orthonormal) set of
eigenvectors. Then, it can easily be shown that Γ̃ΓΓ1 = QQQm[Θ̃ΘΘ]1:d
are the Ritz eigenvectors ofHHH†HHH where [Θ̃ΘΘ]1:d has as columns
the eigenvectors of TTTm with the d largest eigenvalues (in
magnitude). Note that the latter procedure results in the BS
obtaining Γ̃ΓΓ1, and consequently Σ̃ΣΣ1

3, using the so-called BS-

3Once Γ̃ΓΓ1 is obtained, then estimating the eigenvalues of HHH†HHH , i.e., Σ̃ΣΣ1,
needed for waterfilling power allocation, comes for free.

initiated echoing. This same procedure can be applied using
MS-initiated echoing, to estimate Φ̃ΦΦ1 (i.e., the eigenvectors of
HHHHHH†), at the MS.

C. Perturbation Analysis
In what follows, we extend some of the known properties

of the conventional Arnoldi iteration, to account for the esti-
mation error, emanating from the distortion variable.

Lemma 1. For the output of the Arnoldi process the following
holds,
(P1) :

QQQ†mAAAQQQm = T̃TTm − ẼEEm , CCCm, (9)

where CCCm = SSSmΛΛΛmSSS
−1
m is such that [ΛΛΛ]i,i ≥ 0 and

SSS−1m = SSS†m

(P2) : Let (λ
(m)
i , sss

(m)
i ) be any eigenpair of CCCm. Then

(λ
(m)
i , θθθ

(m)
i , QQQmsss

(m)
i ) is an approximate Ritz eigenpair

for AAA. Furthermore, the approximation error is such that,

‖AAAθθθ(m)
i − λ(m)

i θθθ
(m)
i ‖22 ≤ c(i)m + ‖IIIM −QQQmQQQ†m‖2F ‖W̃WWm‖2F ,

(10)

where c(i)m = ([T̃TTm]m+1,m|[sss(m)
i ]m|)2.

(P3) : As m→M , ‖AAAθθθ(m)
i −λ(m)

i θθθ
(m)
i ‖22 → 0, implying that

the eigenpairs of CCCm perfectly approximate the eigenpairs of
AAA(up to round-off errors).

Proof: The proof is shown in Appendix B.
We underline the fact that if the distortion variable W̃WWm is

zero, the above derivations reduce to the well-known results
on the Arnoldi process [19, Sect. 6.2]. Lemma 1 establishes
the fact that each eigenpair (λ

(m)
i , sss

(m)
i ) of CCCm4, is associated

with one eigenpair (λ
(m)
i , θθθ

(m)
i ) of AAA.5

Thus, one might be tempted to conclude at this point, that by
computing the eigenpairs ofCCCm, one can perfectly estimate the
eigenpairs of AAA, despite the presence of the distortion variable
W̃WWm. However, the fact remains that CCCm , T̃TTm− ẼEEm cannot
be computed, mainly because ẼEEm is not known to the BS.
As a result, TTTm at the output of the Arnoldi process will be
used instead to approximate the eigenpairs of AAA. Now that we
established that the eigenpairs of CCCm approximate that of AAA,
the natural question is how close are the eigenpairs of TTTm, to
that of CCCm. Noting that TTTm = CCCm +QQQ†mW̃WWm, where CCCm is
the matrix in question, and PPPm ,QQQ†mW̃WWm is the perturbation,
we apply the Bauer-Fike Theorem [21, Th. 7.2.2] to bound the
difference in eigenvalues.

Lemma 2. Every eigenvalue λ̃ of TTTm = CCCm +PPPm satisfies

|λ̃− λ| ≤
√
m ‖W̃WWm‖F ,

where λ is an eigenvalue of CCCm.

4Note that one can show that CCCm is positive semidefinite, i.e., CCCm =
SSSmΛΛΛmSSS

†
m, where [ΛΛΛ]i,i ≥ 0, and SSSm unitary.

5Though (P3) in Lemma 1 implies that the error in approximating the
eigenpairs of AAA with those of CCCm vanishes as m→M , our simulations will
later show that very good approximations can be obtained, even for m�M .
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Proof: Refer to Appendix C
Summarizing thus far, Lemma 1 showed that the eigenpairs

of AAA can be approximated by the eigenvalues of CCCm, with
arbitrarily small error. However, since the latter is not available,
we approximate the eigenpairs of CCCm (and consequently of AAA)
by that of TTTm, the upper Hessenberg matrix at the output of
the Arnoldi process. Finally, Lemma 2 established the fact that
this approximation error is upper bounded by the magnitude
of the perturbation itself, for the eigenvalues

IV. HYBRID ANALOG-DIGITAL PRECODING FOR
MMWAVEMIMO SYSTEMS

In this section we turn our attention to applying the above
framework for subspace estimation and precoding, to the hy-
brid analog-digital architecture. As this section will gradually
reveal, several obstacles have to be overcome for that matter.
We start by presenting some preliminaries that will be used
throughout this section.

A. Preliminaries: Subspace Decomposition
We will limit our discussion to the digital and analog

precoder, keeping in mind that the same applies to the digital
and analog combiner. In conventional MIMO systems, the
estimates of the right and left singular subspace, Γ̃ΓΓ1 and Φ̃ΦΦ1,
obtained using SE-ARN, can directly be used to diagonalize
the channel. However, the hybrid analog-digital architecture
entails a cascade of analog and digital precoder. Recalling the
result of Proposition 1, finding FFF , GGG such that ‖Γ̃ΓΓ1 − FFFGGG‖2F
is minimized is equivalent to minimizing a bound on the
distortion D. Equivalently, Γ̃ΓΓ1 has to be decomposed into FFFGGG
- hence the term Subspace Decomposition (SD), as follows,

min
FFF, GGG

h0(FFF ,GGG) = ‖Γ̃ΓΓ1 −FFFGGG‖2F
s. t. h1(FFF ,GGG) = ‖FFFGGG‖2F ≤ d

FFF ∈ SM,d

(11)

We underline the fact that the authors in [6] arrived to the
same formulation as (11) after a series of approximations to
the mutual information. To a certain extent, (11) is reminiscent
of formulations arising from areas such as blind source separa-
tion, (sparse) dictionary learning, and vector quantization [22],
[23]. Though there is a battery of algorithms and techniques
that have been developed to tackle such problems, the addi-
tional hardware constraint on FFF makes the use of such tools
not possible. As a result, we will resort to developing our own
algorithm. In spite of the non-convex and non-separable nature
of the above quadratically-constrained quadratic program, we
propose an iterative method that attempts to solve for an
approximate solution.

1) Block Coordinate Descent for Subspace Decomposition:
In this part, we further assume that only d of the r available
RF chains are used, i.e., FFF ∈ CM×d and GGG ∈ Cd×d
(the reason for that will become clear later in this section).
The coupled nature of the objective and constraints in (11)
suggests a Block Coordinate Descent (BCD) approach. The
main challenges arise from the coupled nature of the variables
in the constraint (since the latter makes convergence claims of

BCD, not possible [24]), and from the hardware constraint on
FFF . We will show that a BCD approach implicitly enforces the
power constraint in (11), and consequently the latter can be
dropped without changing the problem.

Our approach consists in relaxing the hardware constraint
on FFF , and then applying a Block Coordinate Descent (BCD)
approach to alternately optimize FFF and GGG (while projecting
each of the obtained solutions for FFF on S). For that matter,
we first define the Euclidean projection on the set S in the
following proposition.

Proposition 2. Let XXX ∈ CM×d be defined as [XXX]i,k =
|xi,k| ejφi,k , ∀(i, k), and

YYY = ΠS [XXX]
4
= argmin

UUU∈SM,d

‖UUU −XXX‖2F

denote its (unique) Euclidean projection on the set SM,d. Then
[YYY ]i,k = (1/

√
M) ejφi,k ,∀(i, k).

Proof: Refer to Appendix E
The latter result implies that given an arbitrary FFF , finding

the closest point to FFF , lying in SM,d simply reduces to setting
the magnitude of each element in FFF , to 1/

√
M .

Neglecting the constraint on FFF in (11), one can indeed
show that for fixed GGG (resp. FFF ), the resulting subproblem
is convex in FFF (resp. GGG). With this in mind, our aim is
to produce a sequence of updates, {FFF k,GGGk}k such that the
sequence {h0(FFF k,GGGk)}k is non-increasing (keeping in mind
that monotonicity cannot be shown due to the coupling in the
power constraint). Thus, given GGGk, each of the updates, FFF k+1

and GGGk+1, are defined as as follows,

(J1) FFF k+1 , min
FFF

h0(FFF ) = ‖Γ̃ΓΓ1 −FFFGGGk‖2F

(J2) GGGk+1 , min
GGG

h0(GGG) = ‖Γ̃ΓΓ1 −FFF k+1GGG‖2F
Both (J1) and (J2) are instances of a non-homogeneous (un-
constrained) convex QCQP that can easily be solved (globally)
by finding stationary points of their respective cost functions,
to yield,

FFF k+1 = Γ̃ΓΓ1GGG
†
k(GGGkGGG

†
k)−1 (12)

GGGk+1 = (FFF †k+1FFF k+1)−1FFF †k+1Γ̃ΓΓ1 (13)
We note that our earlier assumption that only d of the RF
chains are used here (i.e. GGG is square), guarantees that (GGGlGGG

†
l )

in (13) is invertible: in fact, our numerical results show that
the incurred performance loss is quite negligible. Moreover,
note that the solution in (12) does not necessarily satisfy the
hardware constraint on FFF . Thus, the result of Proposition 2 can
be used to compute the projection of FFF on SM,d. To prove our
earlier observation that the optimal updates FFF k+1 and GGGk+1

satisfy the power constraint in (11), we plug (13) into the
following (dropping all subscripts for simplicity),

‖FFFGGG‖2F = tr

Γ̃ΓΓ
†
1FFF (FFF †FFF )−1FFF †FFF︸ ︷︷ ︸

=IIId

(FFF †FFF )−1FFF †Γ̃ΓΓ1


≤ tr

(
(FFF †FFF )−1FFF †FFF

)
tr
(
Γ̃ΓΓ1Γ̃ΓΓ

†
1

)
= d (14)
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procedure [FFF , GGG] = BCD-SD (Γ̃ΓΓ1)
Start with arbitrary FFF 0

for k = 0, 1, 2, ... do
GGGk+1 ← FFF †kFFF

−1
k FFF †kΓ̃ΓΓ1

FFF k+1 ← ΠS [Γ̃ΓΓ1GGG
†
k+1(GGGk+1GGG

†
k+1)−1]

end for
end procedure

TABLE III: Block Coordiate Descent for Subspace Decompo-
sition (BCD-SD)

where we assumed that ‖Γ̃ΓΓ1‖2F = 1 w.l.o.g. The above shows
that if BCD is used, then the power constraint in (11) is
always enforced. The corresponding method is termed Block
Coordinate Descent for Subspace Decomposition (BCD-SD),
and is shown in Table III. We underline the fact that due
to the projection step, one cannot show that the sequence
{ho(FFF k,GGGk)}k is non-increasing.

Remark 1. It can be easily verified that the optimal FFF ?,GGG?
that maximize the R in (4) are such that ‖FFF ?GGG?‖ = d. Though
the optimal solution to (11) is not invariant to scaling, as far as
the performance metric in (4) is concerned, there in no loss in
optimality in scaling the solution given by BCD-SD, to fulfill
the power constraint with equality.

2) One-dimensional case: Note that echoing - the mecha-
nism at the heart of our proposed approach, relies on the BS
being able to send any vector qqql, to be echoed back by the
MS (Table II). For the hybrid analog-digital architecture, this
translates into the BS being able to (accurately) approximate
qqql by fff lgl, where fff l is a vector, gl is a scalar. As a result,
subspace decomposition for the one-dimensional case is of
great interest here. When d = 1, (11) reduces to the problem
below,

Lemma 3. Consider single dimension SD problem,{
min
fff, g

ho(fff, g) = ‖fff‖22 g2 − 2g<(fff†γ̃γγ1)

s. t. [fff ]i = 1/
√
M ejφi ,∀i

(15)

where g ∈ R+ and [γ̃γγ1]i = rie
jθi . Then the problem admits

a globally optimum solution given by, [fff?]i = 1/
√
M ejθi ,∀i

and g? = ‖γ̃γγ1‖1/
√
M

Proof: Refer to Appendix D
Similarly to (14), it can be verified that a power constraint is

indeed implicitly verified. Moreover, the approximation error
eee , γ̃γγ1 − fffg is such that,

[eee]i = |ri − ‖γ̃γγ1‖1/M |ejθi , ∀i ∈ {M}. (16)
We note that when considering the effective beamformer,
i.e., fffg, the solution given by Lemma 3 is to some extent
reminiscent of equal gain transmission in [25], [26], in terms
of the optimal phases.

Note that the decomposition can be written in a simple form.
Given a vector γ̃γγ1, its globally optimal decomposition (from
the perspective of (11)) is given as,

γ̃γγ1 ≈ g?1fff?1 , (‖γ̃γγ1‖1/
√
M) ΠS [γ̃γγ1].

This can be generalized to obtain an alternate method to BCD-

Fig. 2: Average subspace distance ‖Γ̃ΓΓ1 − FFFGGG‖2F , for our
proposed method and OMP

SD, by decomposing Γ̃ΓΓ1, in a column-wise fashion,

Γ̃ΓΓ1 = [γ̃γγ1, · · · , γ̃γγd] ≈ [g?1fff
?
1, · · · , g?dfff?d]

, (1/
√
M) [ΠS [γ̃γγ1], · · · ,ΠS [γ̃γγd]] diag(‖γ̃γγ1‖1, · · · , ‖γ̃γγd‖1)

3) Numerical Results: As mentioned earlier, (11) was for-
mulated and solved in [6], using a variation on the well-known
Orthogonal Matching Pursuit (OMP), by recovering FFF in a
greedy manner, then updating the estimate of GGG in a least
squares sense. We thus compare its average performance with
our proposed method, for a case where Γ̃ΓΓ1 ∈ CM×d is such that
M = 64, r = 10 (for several values of d). The reason for the
massive performance gap in Fig. 2 is that BCD-SD attempts to
find a locally optimal solution to (11) (though this cannot be
shown due to the coupled variables). Moreover, OMP is halted
after r iterations, since it recovers the columns of FFF one at
time, whereas our proposed method runs until reaching a stable
point. Interestingly, despite its extreme simplicity, the column-
wise decomposition offers a surprisingly good performance (as
seen in Fig. 2).

B. Echoing in the Hybrid Analog-Digital Architecture
It is clear by now that the gist behind the schemes described

in this work, is to obtain an estimate of {HHH†HHHqqql}ml=1 at
the BS, by exploiting channel reciprocity, using BS-initiated
echoing described in (7). However, in the case of the hybrid
analog-digital architecture, there are several issues that prevent
the application of the latter procedure. Firstly, the digital
beamforming vector qqql needs to be approximated by a cascade
of analog and digital beamformer, using the decomposition in
Sect. IV-A, i.e., qqql = f̃ff lg̃l + eeel, where eeel is the approximation
error given in (16). Moreover, the BS-initiated echoing relies
on the MS being able to amplify-and-forward its received
signal: this is clearly not possible using the hybrid analog-
digital architecture. In addition, neither the BS nor MS can
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digitally process the received signal at the antennas: only after
the application the analog precoder / combiner (and possibly
the digital precoder / combiner) can the baseband signal be
digitally manipulated [6], [10].

With this in mind, we emulate the A-F step in BS-initiated
echoing, (7), as follows. qqql is decomposed into f̃ff lg̃l at the BS
and sent over the DL. The MS linearly processes the received
signal in the downlink, with the analog combiner, i.e., sssl =
WWW †l (HHHf̃ff lg̃l), and same filter is used as the analog precoder, to
process the transmit signal in the UL, i.e., WWW lsssl. Finally, the
received signal at the BS is processed with the analog precoder,
FFF l. The resulting estimate, pppl, at the BS is,

pppl = FFF †lHHH
†WWW lWWW

†
lHHH(qqql − eeel) (17)

Note that the above process is possible using the hybrid analog-
digital architecture. In this section, we opt to ignore noise at
both the BS and MS, and focus on other sources of distortion
that can be dealt with, such as the decomposition error, eeel. It
is clear from (17) that pppl is no longer a “good” estimate of
HHH†HHHqqql, for the reasons stated below.

1. Analog-Processing Impairments (API): Processing the
signal at the MS with the analog combiner / precoder
WWW l greatly distorts the the singular values / vectors of
the effective channel. Moreover, processing the received
signal at the BS with the analog combiner FFF l ∈ CM×r
implies that pppl is now a low-dimensional observation
of the desired M -dimensional quantity HHH†HHHqqql (since
r < M ).

2. Decomposition-Induced Distortions (DID): The error
from decomposing qqql at the BS, eeel, further distorts the
estimate (as seen in (17)).

The above impairments are a byproduct of shifting the mas-
sive digital precoding burden to the analog domain. In what
follows, these impairments will individually be investigated
and addressed.

1) Cancellation of Analog-Processing Impairments: Our
proposed method for mitigating analog-processing impair-
ments (API) relies on the simple idea of taking multiple
measurements at both the BS and MS, and linearly combining
them, such that WWW lWWW

†
l and FFF lFFF

†
l approximate an identity

matrix.
In the DL, qqql is approximated by f̃ff lg̃l, and f̃ff lg̃l is sent over

the DL channel6, Kr times (where Kr = N/r), each linearly
processed with an analog combiner {WWW l,k ∈ CN×r}Kr

k=1, to
obtain the digital samples {sssl,k}Kr

k=1 (this process is shown in
Table (IV)). Moreover, the analog combiners are taken from
the columns of a Discrete Fourier Transform (DFT) matrix,
i.e,

[WWW l,1, ...,WWW l,Kr ] = DDDr, (18)

where DDDr ∈ CN×N is a normalized N × N DFT matrix
(i.e., where each column has unit norm and satisfies the unit-

6When sending f̃ff lg̃l over the DL, we can use d RF chains, i.e.,

FFF lGGGl 111d = [f̃ff l, · · · , f̃ff l] diag(g̃l, · · · , g̃l) 111d = df̃ff lg̃l

thereby resulting in an array gain factor of d. Moreover, since we know
from (14) that ‖f̃ff lg̃l‖22 ≤ 1, indeed this transmission scheme satisfies the
power constraint. We also make use of this observation in the UL sounding.

Fig. 3: Repetition-aided (RAID) echoing for the hybrid analog-
digital architecture

modulus constraint). The same analog combiners, {WWW l,k}k,
are used to linearly combine {sssl,k}k, to form s̃ssl . We dub
this procedure Repetition-Aided (RAID) Echoing, and the
aforementioned DL phase, is shown in Table IV. The resulting
signal at the MS, s̃ssl, can be rewritten as,

s̃ssl =

(
Kr∑
k=1

WWW l,kWWW
†
l,k

)
HHH(df̃ff lg̃l) = dHHHf̃ff lg̃l (19)

where equality follows from our earlier definition of {WWW l,k}k
as columns of DFT matrices in (18). Note that the effect of
processing the received signal with the analog combiner has
been completely suppressed. Now, s̃ssl is normalized, and echoed
back in the UL direction.

A quite similar process is used in the UL: s̃ssl is first decom-
posed into w̃wwlũl, d RF chains are used to send it over the UL,
Kt times (where Kt = M/r), and each observation is linearly
processed with an analog combiner {FFF l,m ∈ CM×r}Kt

m=1.
The resulting digital samples {zzzl,m}Kt

m=1 are again linearly
combined with the same {FFF l,m}m, to obtain the desired
estimate pppl. Similar to the DL case, the analog combiners are
taken from the columns of a Discrete Fourier Transform (DFT)
matrix, i.e, [FFF l,1, ...,FFF l,Kt

] = DDDt. The process for the UL is
also shown in Table IV. We combine its steps to rewrite pppl as,

pppl =

(
Kt∑
m=1

FFF l,mFFF
†
l,m

)
HHH†(dw̃wwlũl) = dHHH†w̃wwlũl (20)

At the output of the RAID procedure, the BS has the
following pppl,

pppl = dHHH†w̃wwlũl = dHHH†(s̃ssl − eee(r)l ) = dHHH†(dHHHf̃ff lg̃l − eee
(r)
l )

= d2HHH†HHHqqql − d2HHH†HHHeee(t)l − dHHH
†eee

(r)
l (21)

Note that eee(t)l = qqql − f̃ff lg̃l (resp. eee(r)l = s̃ssl − w̃wwlũl) is the error
emanating from approximating qqql (resp. s̃ssl) at the BS (resp.
MS), that we dub BS-side (resp. MS-side) decomposition-
induced distortion (DID). It is quite insightful to compare pppl in
the latter equation with (17). We can clearly see that impair-
ments originating from processing the received signals with
both WWW l and FFF l, have completely been suppressed. In (21),
pppl indeed is the desired estimate, i.e., HHH†HHHqqql, corrupted by
distortions emanating for the BS-side decomposition, eee(t)l , and
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// DL phase
qqql = f̃ff lg̃l + eee

(t)
l

sssl,k = WWW †l,kHHH(df̃ff lg̃l), ∀k ∈ {Kr}
s̃ssl =

∑Kr

k=1WWW l,ksssl,k
// UL phase

s̃ssl = w̃wwlũl + eee
(r)
l

zzzl,m = FFF †l,mHHH
†(dw̃wwlũl), ∀m ∈ {Kt}

pppl =
∑Kt

m=1FFF l,mzzzl,m
TABLE IV: Repetition-Aided (RAID) echoing

the MS side decomposition, eee(r)l (both investigated later in the
next subsection). Both UL and DL phases of he process are
illustrated in Fig. 3, and detailed in Table IV.

Remark 2. Note that employing this process reduces the
hybrid analog-digital architecture into a conventional MIMO
channel: any transmitted vector in the DL, (f̃ff lg̃l), can be
received in a “MIMO-like” fashion, as seen from (19), at a
cost of Kr channel uses (the same holds for the UL, as seen
from (20) ).

It can be seen from the above, that in the DL (resp. UL), d
RF chains are active at the BS (resp. MS), while all r RF chains
are used at the MS (resp. BS), to minimize the overhead. With
this in mind, it can be seen that the associated overhead with
each echoing, Ω = (M + N)/r (channel uses), will decrease
as more RF chains are used.

2) Imperfect Compensation of Analog-Processing Impair-
ments: Though the above method perfectly removes all ar-
tifacts of analog processing, the overhead is proportional to
(M +N)/r. A natural question is whether a similar result can
still be achieved when DDDr and DDDt are truncated matrices i.e.
when Kr < N/r and Kt < M/r. Perfect cancellation of API
relies on a careful choice of the analog precoder / combiner for
each measurement, by picking {WWW l,k}Kr

k=1 and {FFF l,m}Kt
m=1 to

span all the columns of (square) DFT matrices. We investigate
the effect of picking DDDr and DDDt as truncated matrices, i.e.
when Kr < N/r and Kt < M/r. Focusing our discussion
on just analog precoders for brevity, we seek to find a (tall)
matrix D̃DDt ∈ CM×(ηM), η < 1, such that,min

D̃DDt

‖ 1
M IIIM − D̃DDtD̃DD

†
t‖2F

s. t. D̃DDt ∈ SM, ηM .
(22)

Due to the apparent difficulty of the problem, one can resort
to stochastic optimization tools, e.g. simulated annealing: this
approach is ideal for the design of D̃DDt (and D̃DDr as well), since
it is completely independent of all parameters (except M,N
and η), and can thus be computed off-line and stored for later
use. Then, the resulting overhead would be reduced to Ω =
ηM+N

r . Further investigations along this line are outside the
scope of this work, but we opted to include them briefly, for
completeness.

3) Decomposition-Induced Distortions: We investigate the
effect of BS-side DID, eee(t)l , and MS-side DID, eee(r)l , that distort
pppl, at the output of the RAID procedure in (21). It can be easily
verified that eee(t)l only distorts the magnitude of HHH†HHHqqql, not
its phase, and consequently its effect is minimal and can be

neglected. Since this claim cannot be made for the MS-side
DID, eee(r)l , we provide a mechanism for mitigating the latter.

Our intuition for compensating for MS-side DID is to obtain
an estimate of HHH†eee(r)l at the BS, and combine it with pppl
in (21). Though at a first glance, one obvious solution is
for the MS to send eee(r)l in the UL, the fact is, eee(r)l does not
satisfy the hardware constraints. Letting

ψψψl = ΠS [eee
(r)
l ] = (1/

√
N)[ejφ1 , · · · , ejφN ]T ,

we recall that ψψψl has the same phases as eee(r)l . In a nutshell,
our proposed method is to first approximate eee(r)l by αlψψψl at
the MS, send ψψψl over the UL, and feedback αl(note that ψψψl
can be directly sent in the UL using the analog combiner).
Further investigations reveal that indeed this mechanism works.
However, since it comes at an additional overhead cost of (M+
N)/r, we opt not to include them in the RAID procedure.

C. Proposed Algorithms
Combining the results of the previous subsections, we can

now formulate our algorithm for Subspace Estimation and De-
composition (SED) for the hybrid analog-digital architecture
(shown in Algorithm 1): estimates of the right / left singular
subspaces, Γ̃ΓΓ1 and Φ̃ΦΦ1, can be obtained by using the SE-ARN
procedure (Sect. III), keeping in mind that the echoing phase
(Steps 1.a and 1.b) is now replaced by the RAID echoing
procedure (Sect. IV-B3). Then, the multi-dimensional subspace
decomposition procedure, BCD-SD in Sect. IV-A, is then used
to approximate each of the estimated singular spaces, by a
cascade of analog and digital precoder / combiner.

Algorithm 1 Subspace Estimation and Decomposition (SED)
for Hybrid Analog-Digital Architecture

// Estimate Γ̃ΓΓ1 and Φ̃ΦΦ1

Γ̃ΓΓ1 = SE-ARN (HHH , d)
Φ̃ΦΦ1 = SE-ARN (HHH†, d)
// Decompose Γ̃ΓΓ1 and Φ̃ΦΦ1

[FFF , GGG ] = BCD-SD (Γ̃ΓΓ1, ρ)
[WWW , UUU ] = BCD-SD (Φ̃ΦΦ1, ρ)

Note that previously proposed algorithms within this context
such as the PM and TQR in [14], are no longer applicable
here: indeed both rely on the MS being able to amplify-and-
forward its received signal at the antennas, back to the BS,
to form estimates for {HHH†HHHqqql}l. Clearly this modus operandi
cannot be supported by the hybrid analog-digital architecture.
Interestingly, it is possible to apply elements from the RAID
echoing structure that we developed, effectively modifying the
original echoing structure of the latter schemes, and adapting
them to the hybrid analog-digital architecture (as shown in
Algorithm 2). Due to limited space, we will skip the details
behind the algorithm steps, most of them have been already
elaborated.

D. Bounds on Eigenvalue Perturbation
It can be clearly seen that the iterative nature of Algorithm 2

makes the application of Lemma 2, to quantify the impact of
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Algorithm 2 Modified Two-way QR (MTQR) for the hybrid
analog-digital architecture

for l = 1, 2, ..., I do
// Approximate columns of XXX l

[XXX l]n ≈ f̃ff l,ng̃l,n, ∀n ∈ {d}
X̃XX l = [ f̃ff l,1g̃l,1 , · · · , f̃ff l,dg̃l,d ]

// Send X̃XX l in DL, one column at time
TTT l,k = WWW †l,kHHHX̃XX l, ∀k ∈ {Kr}
YYY l =

∑Kr

k=1WWW l,kTTT l,k ; YYY l+1 = qr(YYY l)
// Approximate columns of YYY l+1

[YYY l+1]n ≈ w̃wwl+1,nũl+1,n, ∀n ∈ {d}
ỸYY l+1 = [ w̃wwl+1,1ũl+1,1 , · · · , w̃wwl+1,dũl+1,d ]

// Send ỸYY l+1 in UL, one column at time
SSSl,k = FFF †l,kHHH

†ỸYY l+1, ∀k ∈ {Kt}
ZZZl =

∑Kt

k=1FFF l,kSSSl,k ; XXX l+1 = qr(ZZZl)
end for

decomposition and approximation errors, not possible. On the
other hand, for Algorithm 1, the fact that each HHH†HHHqqql is only
corrupted by two sources of DID, eee(r)l and eee

(r)
l , makes the

latter possible. With that in mind, we specialize the result
of Sect. III-B and Lemma 2 (developed for generic MIMO
systems) to the case of Algorithm 1 in the hybrid analog-
digital architecture. We thus relate the eigenvalues of TTTm at
the output of SE-ARN, to the desired eigenvalues of CCCm, and
consequently of AAA (Sect.III-B).

Corollary 1. Every eigenvalue λ̃ of TTTm satisfies

|λ̃− λ| ≤ m‖HHH‖2F (3 +
1

d‖HHH‖F
)

where λ in an eigenvalue of CCCm.

Proof: Refer to Appendix F
Moreover, recall that as m → M , λ is an eigenvalue of AAA

(Lemma 1 - P3). Thus, this result directly relates the eigenval-
ues of TTTm, to that ofAAA: though this holds asymptotically in m,
our simulations will show that good approximations can still
be obtained, even for m�M . Note that we have ignored the
effect of DID compensation, within the RAID echoing process,
for convenience. As a result, the above bound is a “pessimistic”
performance measure.

E. Practical Implementation Aspects

We evaluate the communication overhead of both schemes,
in number of channel uses, keeping in mind that the actual
overhead will be dominated by the latter. Algorithm 1 requires
Kt+Kr channel uses per iteration, to estimate Γ̃ΓΓ1, and Kt+Kr

to estimate Φ̃ΦΦ1, for a total of

ΩSED = 2m
M +N

r
, (23)

m being the number of iterations for the Arnoldi process.
Letting I denote the number of iterations for MTQR, the

number of channel uses required for Algorithm 2 is,

ΩMTQR = dI
M +N

r
(24)

F. Discussion
We have presented an approach to maximizing the metric R

defined in (4). As mentioned earlier, the value of the objective
function is in general not an achievable rate for our system.
However, optimizing similar expressions related to achievable
rates has been proved to give good results in previous work on
transmission with partial CSI [27]. Since any rate achievable
with partial CSI, cannot be larger than the corresponding rate
achievable with perfect CSI, this criterion always provides an
upper bound on the achievable rates in our system. Hence,
in our approach, if the proposed algorithms result in values
for R that are closing in on the perfect CSI upper bound, then
the scheme is performing optimally (in the sense of achievable
rates). With that in mind, and letting H̃HH be the channel estimate
resulting from our proposed methods, we use the following,
as our performance metric in the simulations,

R̃ = log2

∣∣∣∣∣IIId +
1

σ2
(r)

UUU†WWW †H̃HHFFFGGGGGG†FFF †H̃HH
†
WWWUUU(UUU†WWW †WWWUUU)−1

∣∣∣∣∣ .
V. NUMERICAL RESULTS

A. Simulation Setup
In this section, we numerically evaluate the performance of

our algorithms, in the context of a single-user MIMO link. We
adopt the prevalent physical representation of sparse mmWave
channels adopted in the literature, e.g., [6], [7] , where only
L scatterers are assumed to contribute to the received signal -
an inherent property of the poor scattering nature in mmWave
channels,

HHH =

√
MN

L

L∑
i=1

βi aaar(χ
(r)
i )aaa†t(χ

(t)
i ) (25)

where χ(r)
i and χ(t)

i are angles of arrival at the MS, and angles
of departure at the BS (AoA / AoD) of the ith path, respec-
tively (both assumed to be uniform over [−π/2, π/2]), βi is
the complex gain of the ith path such that βi ∼ CN (0, 1), ∀i.
Finally, aaar(χ

(r)
i ) and aaat(χ

(t)
i ) are the array response vectors

at both the MS and BS, respectively. For simplicity, we will
use uniform linear arrays (ULAs), where we assume that the
inter-element spacing is equal to half of the wavelength. In
what follows, we also assume that M/r = 8 and N/r = 4,
i.e., as M,N increase, so does the number of RF chains.

1) Benchmarks / Upper bounds: We use the Adaptive
Channel Estimation (ACE) method (Algorithm 2 in [7]) as
a benchmark, to estimate the mmWave channel. It is based
on sounding of hierarchical codebooks at the BS, feedback of
the best codebook indexes by the MS, and finding the analog /
digital precoders and combiners using OMP [6]. Moreover, the
authors characterized the resulting communication overhead
ΩACE , as a function of the codebook resolution. We used the
corresponding MATLAB implementation that was provided by
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the authors. We adjust the number of iterations for both our
proposed schemes, and the codebook resolution of benchmark
scheme, such that ΩSED = ΩMTQR , Ωo ≈ ΩACE . Note
that we do not assume any quantization for phases of the RF
filters.

We also compare the algorithms’ performance against the
“optimal performance”, R? in (5), where full CSIT/CSIR is
assumed, fully digital precoding is employed, and the optimal
precoders are used. All curves are averaged over 500 channel
realizations.

Remark 3. Note that if one want to use “classical” pilot-
based channel estimation to estimate the DL channel, i.e., a
pilot sequence of minimum length M , then the same repetition-
based framework that was used in RAID echoing, has to be
used to cancel the effect of WWW from the effective channel
estimate: it can be easily seen that the resulting total (both DL
and UL) number of pilots slots would be 2MN/r2, thereby
making the latter method infeasible.

B. Performance Evaluation
We start by investigating the performance of our schemes

against the above benchmarks, for the case where M =
128, N = 64, L = 3, and m = 3d, for two cases: d = 1
and d = 2 where the resulting overhead is Ωo = 72 and
Ωo = 144, respectively. It can be seen from Fig. 4 that both
proposed schemes exhibit relatively similar performances, that
are in turn very close to the optimal performance bound R?

(especially at medium-to-high SNR). This indeed suggests that
the multiplexing gain achieved by conventional MIMO systems
can still be maintained in the hybrid analog-digital architecture,
albeit at a much lower cost: the number of required RF chains
can be drastically decreased, resulting in savings in terms of
cost and power consumption. Moreover, we observe a sharp
and significant performance gap between both our schemes,
and the benchmark from [7], over all SNR ranges (the gap
being more significant in the low-SNR regime).

Though the performance of Algorithm 2 seems to be some-
what better, we opt to focus on Algorithm 1, since it is the
main focus of the current work. With that in mind, we next
investigate its scalability: we scale up M and N (assuming
N = M/2, for simplicity), while keeping everything else fixed,
i.e., d = 2,m = 6, and consequently Ωo = 144. In doing
that, we noticed that the complexity of the benchmark scheme
was prohibitively high, thus preventing us from investigating
its scalability: we were unable to get any results for systems
larger than 128×64 (our initial investigations suggest that this
is chiefly due to the SVD that is applied to the large estimated
channel). On the other hand, both our algorithms exhibit no
such problems since all the computations that they involve
are matrix-vectors / matrix-matrix operations. Consequently,
the complexity gap between Algorithm 1 and the benchmark
increases drastically, as M,N grow.

Fig 5 clearly shows that Algorithm 1 is able to harness the
significant array gain inherent to large antenna systems (by
closely following the optimal performance bound, R?, with
a small constant gap), while keeping the overhead strikingly
small. Though the performance might not be good enough to

Fig. 4: Average performance of proposed schemes (M =
128, N = 64, d = 2, L = 3,m = 6)

Fig. 5: Average performance for different M,N (N =
M/2, d = 2, L = 4,m = 6,Ωo = 144)

offset the overhead, for the 16× 8 case, it surely does for the
256× 128. Moreover, note that that gap between the optimal
performance and Algorithm 1 is quite small (across the entire
SNR range) for small systems dimensions, and quite small
even for large values of M (at high SNR). The key to this
rather impressive result is to have M/r and N/r fixed, as
M,N increase.

We also evaluate the performance of Algorithm 1 in a
more realistic manner, by adopting the Spatial Channel Model
(SCM) detailed in [28], [29], and modifying its parameters
to emulate mmWave channels: the number of paths is set to
4, the carrier frequency to 60 GHz, the mobile speed is 5
km/h, the BS / MS array is modified to implement ULAs,
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Fig. 6: Average performance of proposed schemes over SCM
channels (M = 64, N = 32,m = 2d)

and an ’urban micro’ scenario is selected, where small a Ωo
is desired. Fig. 6 shows the average performance of such a
system, with M = 64, N = 32,m = 2d, for several values
of d (each resulting in different values for Ωo). Though both
our algorithm, and the benchmark exhibit similar performances
for d = 1, this gap increases with d, e.g. for d = 3 this
performance gap is quite significant. Moreover, we can clearly
see that Algorithm 1 yields a relatively high throughput in this
realistic simulation setting (especially for d = 3), while still
keeping the overhead at a relatively low level.

VI. CONCLUSION

We proposed an algorithm for blindly estimating the left
and right singular subspace of a mmWave MIMO channel, by
exploiting channel reciprocity that is inherent to TDD systems.
Though the algorithm is a perfect match for conventional
(large) MIMO systems, we extend it to operate under the
constraints dictated by the hybrid analog-digital architecture,
and show via simulations that it is ideal for large MIMO
channels, with low rank, e.g., mmWave channels. Finally, our
simulations showed that a similar performance to the ideal case
(fully digital perfect CSI) can be achieved, with a only a few
RF chains, thereby resulting in significant saving in energy and
cost, over conventional MIMO systems.

APPENDIX

A. Proof of Proposition 1
Assuming w.l.o.g. that FFFGGG ⊆ span(ΓΓΓ1) and WWWUUU ⊆

span(ΦΦΦ1), then HHHe = UUU†WWW †(ΦΦΦ1ΣΣΣ1ΓΓΓ
†
1)FFFGGG.

D , log2

∣∣IIId + ΣΣΣ2
1

∣∣− log2

∣∣∣IIId +HHHeHHH
†
e(σ

2
(r)UUU

†WWW †WWWUUU)−1
∣∣∣

(a)

/ tr(IIId + ΣΣΣ2
1)− tr

(
HHHeHHH

†
e(σ

2
(r)UUU

†WWW †WWWUUU)−1
)

(b)

≤ c− (σ2
max[WWWUUU ]/σ2

(r))tr
(
HHHeHHH

†
e

)
≤ c− (δ/σ(r))

2tr
(
HHHeHHH

†
e

)
(c)
= c− (δ/σ(r))

2tr
(
ΣΣΣ1(ΓΓΓ†1FFFGGGGGG

†FFF †ΓΓΓ1)ΣΣΣ1(ΦΦΦ†1WWWUUUUUU†WWW †ΦΦΦ1)
)

(b)

≤ c− kotr
[
(ΦΦΦ†1WWWUUUUUU†WWW †ΦΦΦ1)(ΓΓΓ†1FFFGGGGGG

†FFF †ΓΓΓ1)
]
, D1

where c = tr(IIId + ΣΣΣ2
1) and ko = (δσd/σ(r))

2. Note that (a)
follows from log |AAA| ≤ tr(AAA) and log |III +AAA| ≈ tr(AAA),∀ AAA �
000 (Taylor expansion of log |III + AAA| ), (b) form the fact that
tr(AAABBB) ≥ λmin[AAA]tr(BBB),∀AAA,BBB � 000, and (c) from the circular
invariance of the trace. We use the tr() lower bound to further
bound D1 in two ways,

D1 ≤ c− koσ2
min[ΦΦΦ†1WWWUUU ] ‖GGG†FFF †ΓΓΓ1‖2F ≤ c− koε2 ‖GGG†FFF †ΓΓΓ1‖2F

D1 ≤ c− koσ2
min[ΓΓΓ†1FFFGGG] ‖UUU†WWW †ΦΦΦ1‖2F ≤ c− koε2 ‖UUU†WWW †ΦΦΦ1‖2F

and combine them to yield, a bound on D,

D ≤ c+ koε
2
(
−‖GGG†FFF †ΓΓΓ1‖2F − ‖UUU†WWW †ΦΦΦ1‖2F

)
/2

≤ c+ koε
2
(
−<tr(GGG†FFF †ΓΓΓ1)−<tr(UUU†WWW †ΦΦΦ1)

)
/2

< c+ koε
2
(
‖ΓΓΓ1 −FFFGGG‖2F + ‖ΦΦΦ1 −WWWUUU‖2F )

)
/2

B. Proof of Lemma 1
(P1) : Combining steps (2.b) and (3.a) in the SE-ARN
procedure, we write,

AAAqqql + w̃wwl =

l+1∑
i=1

[T̃TTm]i,l qqqi +

l∑
i=1

[EEEm]i,l qqqi , ∀l ∈ {m},

We can rewrite the latter equation in matrix form, using the
definitions of T̃TTm, W̃WWm given in (8),

AAAQQQm + W̃WWm = QQQmT̃TTm + [T̃TTm]m+1,m qqqm+1bbb
†
m +QQQmEEEm

(26)

where bbbm is the mth elementary vector, and EEEm =
[QQQ†mW̃WWm]U . We can further simplify the above, using the fact
that QQQ†mQQQm = IIIm and QQQ†mqqqm+1 = 000,

QQQ†mAAAQQQm +QQQ†mW̃WWm = T̃TTm +EEEm

Using the definition of EEEm, we write,

QQQ†mAAAQQQm = T̃TTm + [QQQ†mW̃WWm]U −QQQ†mW̃WWm

= T̃TTm − ẼEEm , CCCm

where ẼEEm = [QQQ†mW̃WWm]SL, as defined in (8).

(P2) : Noting that T̃TTm+EEEm = CCCm+QQQ†mW̃WWm, we rewrite (26)
as,
AAAQQQm −QQQmCCCm = [T̃TTm]m+1,m qqqm+1bbb

†
m − (IIIM −QQQmQQQ†m)W̃WWm
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Multiplying the latter equation by sss(m)
i , and using the fact that

CCCmsss
(m)
i = λ

(m)
i sss

(m)
i , and QQQmsss

(m)
i = θθθ

(m)
i

AAAθθθ
(m)
i −λ(m)

i θθθ
(m)
i

= [T̃TTm]m+1,m qqqm+1bbb
†
msss

(m)
i − (IIIM −QQQmQQQ†m)W̃WWmsss

(m)
i

Finally, the desired residual is upper bounded as,

‖AAAθθθ(m)
i − λ(m)

i θθθ
(m)
i ‖22

≤ ([T̃TTm]m+1,m|bbb†msss
(m)
i |)2 + ‖(IIIM −QQQmQQQ†m)W̃WWmsss

(m)
i ‖2F

≤ ([T̃TTm]m+1,m|[sss(m)
i ]m|)2 + ‖IIIM −QQQmQQQ†m‖2F ‖W̃WWm‖2F

where the last inequality follows from ‖BBB1BBB2xxx‖22 ≤
‖BBB1‖2F .‖BBB2‖2F .‖xxx‖22

(P3) : The proof immediately follows by noting that ‖IIIM −
QQQmQQQ

†
m‖2F → 0 and [T̃TTm]m+1,m → 0, as m → M , thereby

implying that ‖AAAθθθ(M)
i − λ(M)

i θθθ
(M)
i ‖22 � 1.

C. Proof of Lemma 2

The proof follows from a direct application of the Bauer-
Fike Theorem [21, Th. 7.2.2]. Let CCCm = SSSmΛΛΛmSSS

−1
m be the

diagonalizable matrix in question, and TTTm = CCCm + PPPm the
“perturbed” matrix. Then, every eigenvalue λ̃ of TTTm satisfies,

|λ̃− λ|2 ≤ ‖SSSm‖22.‖SSS−1m ‖22.‖PPPm‖22 = ‖QQQ†mW̃WWm‖22
where λ is an eigenvalue of CCCm, and ‖BBB‖2 , σmax(BBB) is the
vector-induced matrix 2-norm. The last equality follows from
the fact that SSSm is unitary, as discussed in Lemma 1. Using
the fact that ‖BBB‖2 ≤ ‖BBB‖F , we rewrite the last equation,

|λ̃− λ|2 ≤ ‖QQQ†mW̃WWm‖2F =

m∑
(i,j)=1

|qqq†iw̃wwj |
2 ≤

m∑
(i,j)=1

‖qqqi‖22‖w̃wwj‖22

=

m∑
(i,j)=1

‖w̃wwj‖22 = m ‖W̃WWm‖2F

This concludes the proof.

D. Proof of Lemma 3

Note that there is not loss in optimality by assuming the
g ∈ R+. Moreover, exploiting the structure of ho, the globally
optimal solution can be found by optimizing for fff , assuming
g is fixed (and vice) versa, i.e.,

fff?
4
=argmin

fff

g2(fff†fff)− 2g<(fff†γ̃γγ1), s. t. [fff ]i = 1/
√
M ejφi

(a)⇔ {φ?i } =argmax
{φi}

1/
√
M <

(
M∑
i=1

ri e
j(θi−φi)

)

{φ?i } =argmax
{φi}

M∑
i=1

<
(
ej(θi−φi)

)
= {θi}

where (a) follows from applying the one-to-one mapping
[fff ]i → 1/

√
M ejφi ,∀i. Thus, [fff?]i = 1/

√
M ejθi ,∀i.

Plugging fff? into the original problem, the optimization of g

is a simple unconstrained quadratic problem,

g?
4
= argmin

g
g2 − 2g(‖γ̃γγ1‖1/

√
M) = ‖γ̃γγ1‖1/

√
M (27)

E. Proof of Proposition 2

Since YYY ∈ SM,d by definition (i.e., |[YYY ]i,k| = 1/
√
M ) the

problem just reduces to finding the phase of each element in
YYY . Thus,

YYY = ΠS [XXX]
4
= argmin

UUU∈SM,d

‖UUU −XXX‖2F

(a)⇔ argmin
{θi,k}

∑
i,k

|(1/
√
M)ejθi,k − xikejφi,k |2

⇔ {θ?i,k} = {φ?i,k}
where (a) follows from the fact that UUU i,k =
(1/
√
M)ejθi,k ,∀UUU ∈ SM,d. Thus, we conclude that

[YYY ]i,k = (1/
√
M) ejφi,k ,∀(i, k). Furthermore, it follows from

this formulation that this projection is unique (despite the
non-convexity of SM,d).

F. Proof of Corrollary 1

The proof consists of finding a closed-from expression for
W̃WWm as a function of eee(t)l and eee(r)l , and applying the result of
Lemma 2. Note that w̃wwl in (7) can represent any distortion,
and by comparing pppl in both (7) and (21), can infer that w̃wwl =

−HHH†HHHeee(t)l − (1/d)HHH†eee
(r)
l . Thus, W̃WWm in (8) can be written

as,

W̃WWm = −HHH†HHH[eee
(t)
1 , · · · , eee(t)m ]− (1/d)HHH†[eee

(r)
1 , · · · , eee(r)m ]

, −HHH†HHHEEE(t) − (1/d)HHH†EEE(r)

Then applying some basic inequalities of the Frobenius norm,

‖W̃WWm‖F ≤ ‖HHH‖2F .‖EEE(t)‖F + (1/d)‖HHH‖F .‖EEE(r)‖F (28)

On the other hand, recall that eee(t)l = qqql − f̃ff lg̃l and eee
(r)
l =

s̃ssl − w̃wwlũl. Thus, using the results of Sec. IV-A2,

‖eee(t)l ‖2 ≤ ‖qqql‖2 + ‖f̃ff lg̃l‖2 ≤ 2

‖eee(r)l ‖2 ≤ ‖dHHHf̃ff lg̃l‖2 + ‖w̃wwlũl‖2 ≤ 1 + d‖HHH‖F
and it follows that
‖EEE(t)‖F ≤ 2

√
m, ‖EEE(r)‖F ≤

√
m(1 + d‖HHH‖F ) (29)

The upper bound follows by combining (28) and (29).
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