Lecture \#14 Course Wrap-up

EH2745 Computer Applications in Power Systems Introductory Course

Agenda

- iTesla
- Java programming
- Information modelling
- Relational Databases
- Machine Learning

Course Philosophy

The course has two (conflicting) aims

1. Develop the student as a programmer
2. Develop the student in Machine learning and data analysis for power system decision making

Why conflicting?

Course Philosophy

We think you may have taken programming courses before We think you may know something about information modeling We think you may know something about data analysis \& statistics If you do not, we will teach you the basics

We want you to combine these skills in this applied course

Agenda

- Java programming
- Information modelling
- Relational Databases
- Machine Learning

Java programming - no point to repeat

MIT slides for Java syntax and Good Programming Style

For the Test, be prepared to:

- Find errors in small Java programs
- Predict output from Java code examples
- Write/complete small pieces of Java code

Agenda

Java programming

- Information modelling
- Relational Databases
- Machine Learning

Which is the better choice?

- Comma Separated Values
- Pros
- Little extra data has to be sent (only the commas)
- Cons:
- Data has to arrive in the right order
- Using Tags(XML)
- Pros:
- Flexible format (data can arrive out of order)
- Thanks to tags we can search for data
- People can read it!!!
- Cons:
- Verbose - a lot of overhead!

RDF

RDF is "language" to describe relation between things.

It is based on the format:

For example

Line is connected to busbar

RDF continued

Consider the following Example:
Library data encoded in XML
<library name="Glasgow Library">
<book title="History of Glasgow, 1900-1950" author="Walter Hannah"> <position section="A" shelf="2"/>
</book>
<book title="A Brief History of Time" author="Stephen Hawking"> <position section="E" shelf="4"/>
</book>
<book title="History of Glasgow, 1950-2000" author="Walter Hannah"> <position section="A" shelf="2"/>
</book>
</library>
How to specify that Hannah's books are related?

RDF continued

By allowing relation between XML nodes (elements) relations can be described

A key requirements is of course that nodes (elements) are uniqly identifiable - this can be achieved by Name spaces and URIs

URIs are pointers to unique identifers of tags. In a way the URI is the uniquness, it may point to nothing.

But where does the RDF Schema file come from?

From an Information model!

What is the CIM?

A Unified Modeling Language (UML) based information model representing real-world objects and information entities exchanged within the value chain of the electric power industry
A tool to enable integration and information exchange to enable data access in a standard way
A common language to navigate and access complex data structures in any database
It is not tied to a particular vendor's view of the world
It also provides consistent view of the world by operators regardless of which application user interface they are using

Example Hierarchy in the Breaker Class

Now we can "define" the CIM RDFSchema

<rdfs:Class rdf:ID="PowerSystemResource">
<rdfs:label xml:lang="en">PowerSystemResource</rdfs:label> <rdfs:subClassOf rdf:resource="\#Naming"/>
</rdfs:Class>
<rdfs:class rdf:ID="Equipment">
<rdfs:label xml:lang="en">Equipment</rdfs:label>
<rdfs:subclassof rdf:resource="\#PowerSystemResource"/>
</rdfs:Class>
<rdfs:Class rdf:ID="ConductingEquipment">
<rdfs:label xml:lang="en">ConductingEquipment</rdfs:label>
<rdfs:subClassof rdf:resource="\#Equipment"/>
</rdfs:Class>

CIM RDF example

CIM RDF example continued

<rdf:RDF xalns:cim="http://iec.ch/TC57/2003/CIM-schema-cim10\#*
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns\#">
<cim:PowerTransformer rdf:ID="PowerTransformer_1733">
<cim: PowerTransformer.transformerType
rdf:resource="http://iec.ch/TC57/2003/CIM-schema-
cimlo\#TransformerType.voltageControl"/>
cim:Naming.name17-33</cim:Naming.name>
</cim: PowerTransformer>
<cim:TransformerWinding rdf:ID="PrimaryWindingof_PowerTransformer_1733">
cim:TransformerWinding.b0</cim:TransformerWinding.b>
cim:TransformerWinding.r0.099187</cim:TransformerWinding.r>
cim:Transformerwinding.ratedKV115.00</cim:TransformerWinding.ratedkV> <cim:Transformerwinding.windingType
rdf:resource="http://iec.ch/TC57/2003/CIM-schema-cimlo\#WindingType.primary"/>
cim:Transformerwinding.x4.701487</cim:Transformerwinding.x>
<cim:Transformerwinding.Memberof_PowerTransformer
rdf:resource="\#powerTransformer_30 $\overline{2}$ "/>
cim:Naming.namePrimaryWindingof_17-33</cim:Naming.name>
</cim:TransformerWinding>

Agenda

- Java programming
- Information modelling
- Relational Databases
- Machine Learning

Storing data persistently

During execution, RAM is used to store our data
Files can be read and write for persistent storage
But what if we want to access the data in a more flexible way?
Reading single posts, adding data, removing data etc.

What are these tables really?

1. Data is stored on the computer's HDD as bits (of course)
2. The data is struuctred according to some scheme that is efficient for the disk and CPU's access to the data
3. When we people want to write a (Java) program to manipulate the data, we think of it, and access it in the form of tables
4. The DBMS program translate from the tables to actual data storage (which is logical to the CPU but not to us)

Entity Relationship Diagrams

"Relations between Relations"

By defining attributes as "Keys" we can relate Tuples from different Relations to each other.

Good relations

Is this a good relation?

Part	Qt	Warehouse	Adress
Wheel	23	Building2	Main St 12
Wheel	12	Building1	Diagon Alley 3
Seat	9	Building1	Diagon Alley 3

Is this a good relation?

E-R Diagrams "must" be Normalised

- Normalisation of E-R diagrams is like "Good Programming Style" but for Data
- It enables more efficient access to data and more efficient storage
- Reduces the risk of error in data.
- In Theory 5 levels of Normality (or Normal forms) exist
- 1st Normal form
- 2nd Normal form
- 3rd Normal Form

- 4th Normal Form
- 5th Normal Form

First Normal Form

The First Normal is basic housekeeping.

- All Tuples in a Relation must have the same number of attributes.
- Or The degree of all Tuples must be the same.

This borders on the obvious under the definition of a Relational Database, since this is the definition of a Relation

Normalised to 2nd Normal Form

Normalised to 3rd Normal form

Course	Professor
EH2745	Nordström
EH2751	Nordström
EJ2301	Soulard
EG2200	Amelin

Professor	Office
Nordström	Osquldas väg 10, floor 7
Amelin	Teknikringen 33, floor 2
Soulard	Teknikringen 33, floor 1

Tuple Relational Calculus

With the definitions (Relation, Tuple, Attribute) above we can define a number of basic operations on relations

Insert
Delete
Update
Select
Project
Join
Union
Intersection
Difference

Delete

Delete is a unary operation - it operates on a single Relation
It deletes a Tuple fulfilling criteria from a Relation

Update

Update is a unary operation - it operates on a single Relation It modifies an attribute in Tuple fulfilling criteria in a Relation

ID	Name	Grade
1	Jill	D
2	Bob	B
4	Lars	A

Update t.a2=data where t.a1=x in R

Select

Select is a unary operation - it operates on a single Relation The Select operation creates a new relation R2 from relation R1 The Tuples inR1 is a subset of R2

Select * from R1 where ID >1

Project

Project is a unary operation - it operates on a single Relation
The Project operation creates a new relation R2 from relation R1 The Attributes in R1 is a subset of R2

Project Name from R1

Join

Join is a binary operation - it operates two Relations
The Join operation creates a new relation R3 from relations R1 \& R2
Based on common attributes (keys)

Course	Professor			
EH2745	Nordström	Not Normalised??		
EH2751	Nordström			
EJ2301	Soulard			
EG2200	Amelin	Course	Professor	Office
		EH2745	Nordström	Osquldas väg 10, floor 7
		EH2751	Nordström	Osquldas väg 10, floor 7
Professor	Office	EJ2301	Soulard	Teknikringen 33, floor 1
Nordström	Osquidas väg 10, floor 7	EG2200	Amelin	Reknikringen 35, floor 2
Amelin	Teknikringen 33, floor 2	+	di	ult for an
Soulard	Teknikringen 33, floor 1			

Union

A binary operation - it operates on two Relations R1 and R2
Creates a new relation R3 in which each tuple is either in R1, in the R2, or in both R1 and R2.
The two relations must have the same attributes.

Intersection

A binary operation - it operates on two Relations R1 and R2 Creates a new relation R3 in which each tuple is in both R1 and R2. The two relations must have the same attributes.

Agenda

- Java programming
- Information modelling
- Relational Databases
- Machine Learning

Power Systems Analysis An automated learning approach

Understanding states in the power system is established through observation of inputs and outputs without regard to the physical electrotechnical relations between the states.

Adding knowledge about the electrotechnical rules means adding heuristics to the learning

Given a set of examples (the learning set $(L S)$) of associated input/output pairs, derive a general rule representing the underlying input/output relationship, which may be used to explain the observed pairs and/or predict output values for any new unseen input.

Classes of methods for learning

In Supervised learning a set of input data and output data is provided, and with the help of these two datasets the model of the system is created.

In Unsupervised learning, no ideal model is anticipated, but instead the analysis of the states is done in order to identify possible correlations bewteen datapoints.

In Reinforced learning, the model in the system can be gradually refined through means of a utility function, that tells the system that a certain ouput is more suitable than another.

Classification vs Regression

Two forms of Supervised learning
Classification: The input data is number of switch operations a circuitbreaker has performed and the output is a notification whether the switch needs maintenance or not. "Boolean"

Regression: Given the wind speed in a incoming weather front, the output is the anticipated production in a set of wind turbines. "Floating point"

Supervised learning - a preview

In the scope of this course, we will be studying three forms of supervised learning.

- Decision Trees

Overview and practical work on exercise session.

- Artificial Neural Networks

Overview only, no practical work.

- Statistical methods - k-Nearest Neighbour

Overview and practical work on exercise session. Also included in Project Assignment
kNN algorithm can also be used for unsupervised clustering.

How to measure information content

Entropy \mathbf{H} is a measure of Unpredictability.
Defined as:

$$
-\sum p_{i} \log p_{i}
$$

Where
p_{i} is the probability of event i

An example of classification entropy

Color	Size	Shape	Eadible?
Yellow	Small	Round	Yes
Yellow	Small	Round	No
Green	Small	Irregular	Yes
Green	Large	Irregular	No
Yellow	Large	Round	Yes
Yellow	Small	Round	Yes
Yellow	Small	Round	Yes
Yellow	Small	Round	Yes
Green	Small	Round	No
Yellow	Large	Round	No
Yellow	Large	Round	Yes
Yellow	Large	Round	No
Yellow	Large	Round	No
Yellow	Large	Round	No
Yellow	Small	Irregular	Yes
Yellow	Large	Irregular	Yes

Entropy example

Entropy for the example data set is calculated as:

$$
I(\text { all_data })=-\left[\left(\frac{9}{16}\right) \log _{2}\left(\frac{9}{16}\right)+\left(\frac{7}{16}\right) \log _{2}\left(\frac{7}{16}\right)\right]
$$

Giving: 0,9836

Is this reasonable?

Back to our Power System example

Terminal node

Perhaps we can partition our dataset according to some attribute?

Lets try $\mathrm{P}_{\mathrm{u}}<950 \mathrm{MW}$

Equivalent If-Then rules :
Rule 1: If (Pu < 950MW) then Conclude Secure
Rule 2: If ($\mathrm{Pu}>950 \mathrm{MW}$) and ($\mathrm{Qu}<0 \mathrm{Mvar}$) then Conclude Insecure
Rule 3: If (Pu > 950MW) and (Qu > 0Mvar) then Conclude Secure

Finding best partition.

Starting with the candidate attributes (Pu and Qu) in our case We check chich of the values for Pu and Qu that create the most valuable partition in terms of information gain.

$\mathrm{Pu}>1096,2 \mathrm{MW}$ is the best partition

Gradual expansion of the Decision Tree

(c) Tree after the topnode was developed

(d) Tree after the first successor was developed

Complete Decision Tree

How to stop?

The splitting of data sets continues until either:

A perfect partition is reached - i.e. One which perfecly explains the content of the class - a leaf

One where no infomration is gained no matter how the data set is split. - a deadend.

Validation of the Decision Tree

By using the Test Set (2000 samples) we can calidate the Decision tree.

By testing for each Object in the Test Set, we determine if the Decision tree provides the right answer for the Object.

In this particular example, the probability o error can be determined to 2,3 . I.e. Of the 2000 samples 46 were classififed to the wrong class.

Where is the "learning" in ANN

Given an input vector $\mathrm{a}(\mathrm{o})$ (attributes of an object)

For a classification problem
We want to assign it to a class C_{i}
For a regression problem
We want it to approximate a value y

We have to tune the weights of the inputs of the perceptrons

So how to tune the weights in this ...?

10s of perceptrons, 100s of links, 1000s of input values...

Backpropagation algorithm

For a linear Perceptron

$$
\mathrm{y}=\mathrm{x}_{1} \mathrm{w}_{1}+\mathrm{x}_{2} \mathrm{w}_{2}
$$

Find minima of $\mathrm{E}(\mathrm{y})$ w.r.t $\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$

Example from Automatic Learning techniques in Power Systems

One Machine Infinite Bus (OMIB) system

- Assuming a fault close to the Generator will be cleared within 155 ms by protection relays
- We need to identify situations in which this clearing time is sufficient and when it is not
- Under certain loading situations, 155 ms may be too slow.

Initial ANN for the OMIB problem

Weights are random

Perceptrons use linear combination of inputs and tanh function

We want to calculate the clearing time (CCT), i.e. This is a Regression problem

```
Output }\mp@subsup{}{i}{}(\mathrm{ state })=\operatorname{tanh}(\mp@subsup{\alpha}{i,1}{}Pu(\mathrm{ state })+\mp@subsup{\alpha}{i,2}{}Qu(\mathrm{ state })+\mp@subsup{0}{i}{})
```


Output and Error function

The Output function is:

$$
\operatorname{CCT}_{\operatorname{MLP}}(\text { state })=\sum_{i=1 \ldots 10} \beta_{i} \tanh \left(\alpha_{i, 1} P u(\text { state })+\alpha_{i, 2} Q u(\text { state })+\theta_{i}\right)
$$

The error function is:

$$
S E=N^{-1} \sum_{\text {state } \in \boldsymbol{L} \boldsymbol{S}} \mid \mathrm{CCT}(\text { state })-\left.\mathrm{CCT}_{\mathrm{MLP}}(\text { state })\right|^{2},
$$

The final ANN structure is

After 46 iterations

$$
\begin{aligned}
\text { CCT }_{\text {MLP }}= & -0.602710 \tanh (0.000194 P u-0.00034 Q u-0.93219) \\
& -0.401320 \tanh (0.000822 P u-0.00020 Q u-0.76681) \\
& +0.318249 \tanh (0.000239 P u-0.00050 Q u-0.29351) \\
& -0.287230 \tanh (0.002004 P u-0.00034 Q u-1.20080) \\
& +0.184522 \tanh (0.000131 P u-0.00057 Q u-0.03152) \\
& +0.177701 \tanh (0.001799 P u-0.00011 Q u-2.08190) \\
& -0.150720 \tanh (0.001530 P u-0.00056 Q u-1.68040) \\
& +0.142678 \tanh (0.002152 P u-0.00046 Q u-1.72280) \\
& -0.067897 \tanh (0.001910 P u-0.00051 Q u-1.71343) \\
& -0.056020 \tanh (0.000202 P u-0.00085 Q u-0.39876)
\end{aligned}
$$

Error estimation with Test set

The k Nearest Neighbour algorithm

The Nearest Neighbour algorithm is a way to classify objects with attributes to its nearest neighbour in the Learning set.

In k-Nearest Neighbour, the k nearest neighbours are considered.
"Nearest" is measured as distance in Euclidean space.

K-means clustering

K-means clustering involves creating clusters of data It is iterative and continues until no more clusters can be created
It requires the value of k to be defined at start.

Consider for instance a table like the following:
Sepal length Sepal width Petal length Petal width

5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2

K-means clustering (continued)

In k means clustering, first pick k mean points randomly in the space

Caculate the distance from each object to the points

Assign datapoint to its closest mean point

Recalculate means

Once ended, we have k clusters

K-Nearest Neighbour algorithm

Given a new set of measurements, perform the following test:

Find (using Euclidean distance, for example), the k nearest entities from the training set. These entities have known labels. The choice of k is left to us.

Among these k entities, which label is most common? That is the label for the unknown entity.

In the OMIB example database

Sample 4984, and its neighbours

Error in the 1-NN classification

The Most important Slide -

What's on the test
Information Modeling:
Explain relation Information model <-> RDF
Verify XML structure
Relational Databases
Verify 1,2 \& 3rd normal form
Create E-R Diagrams
Convert E-R diagrams into Tables \& Attributes

Machine Learning:

Create a Decision tree for a small dataset
Explain ANN reasoning
Explain kNN \& k-means algorithms
Simple "computing by hand" questions may occur!

