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MapReduce - Data Locality
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First step

Single Processing Framework
Batch Apps

Hadoop 1.x

MapReduce
(resource mgmt, job scheduler,

data processing)

HDFS
(distributed storage)
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MapReduce - Data Locality
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The Job Tracker Job

eDistribute the map and reduce tasks on the nodes
of the cluster

eEnsure fairness of the cluster resource attributions
eTrack the progress of these tasks

e Authenticate job tenants and make sure that each
job is isolated from the others

eEtc.
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Limitations of MapReduce [Zaharia’l1]

e MapReduce is based on an acyclic data flow from
stable storage to stable storage.
- Slow writes data to HDFS at every stage in the pipeline

e Acyclic data flow is inefficient for applications that
repeatedly reuse a working set of data:

- Iterative algorithms (machine learning, graphs)
- Interactive data mining tools (R, Excel, Python)
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eOnly one programming model.

eThe map reduce framework is not using the
cluster at its maximum.

eThe job tracker is a bottle neck.
eThe job tracker is a single point of failure.
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Goals for a new Scheduler

eBeing able to run different frameworks

eScale

eProvide advance scheduling policies

eRun efficiently with different kind of workloads
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Second step

Multiple Processing Frameworks
Batch, Interactive, Streaming ...

Hadoop 2.x

MapReduce Others
(data processing) (spark, mpi, giraph, etc)

| |
YARN

(resource mgmt, job scheduler)

HDFS
(distributed storage)
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Examples of scheduling Policies

eCapacity scheduler:
- Applications have different levels of priorities.

eFair scheduler:
- Applications have different levels of priorities.
- Used resources can be preempted.

eReservation-based scheduler(l):

- Applications can indicate how long they will run and when
they have to be finished.

(1) Reservation-based Scheduling: If you’re late don’t blame us!, C.
Curino & al., Microsoft tech-report
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Scenario

3 kinds of jobs:

- Emergency jobs: need to be run as soon as possible.

- Production jobs: have a deadline, a known running time
and are very exigent on the nodes they can be scheduled
on.

- Best effort jobs: interactive jobs that have lower priority,
but on which users expect low latency.
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Capacity scheduler

Best Best Best
effort emergency effort effort

Best effort production

Now Production work deadline
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Fair scheduler

Best

emergency effort

production Best effort

Now Production work deadline
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Reservation-based scheduler

Best

emergency offort

production

Best

Best effort offort

Now Production work deadline
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Scheduler Architectures

Monolithic Two-level Shared state
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Omega: flexible, scalable schedulers for large compute clusters, Malte Schwarzkopf & al., EuroSys’13
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The monolithic Scheduler

eYarn:

- Apache Hadoop YARN: Yet Another Resource Negotiator, V. K.
Vavilapalli & al., SoCC'13.

eBorg:

- Large-scale cluster management at Google with Borg, A. Verma &
al., EuroSys’15.
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Architecture 1/3

ResourceManager
RM -- NodeManager
client > = ~
| client } >

[ AMService J

L. vy

RM -- AM I

l

MPI —-*‘ Container | MR >
AM AM Umbilical Container
‘ Container («— | I-l Container I

4 '

Node Manager [ Node Manager Node Manager

, .
L A w— |

o

06/05/2015 Managing large clusters resources, Gautier Berthou 18




Architecture 2/3

Resources Manager

Data Data Data Data
node node node node
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Architecture 2 ’?

zookeeper

Master Standby
Resources 2SQI| Resources lage
Manager Manager

ZAN

Data Data
node node

DE]E]

node
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Pros and Cons

ePros:

- Fine knowledge of the state of the cluster state -> optimal
use of the cluster resources.

- Easy to implement new scheduling policies.

eCoONs:
- Bottle neck.

- The failure of the master scheduler has a big impact on
the cluster usage.
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Two level Scheduler

e Mesos: A Platform for Fine-Grained Resource Sharing in the
Data Center, B. Hindman & al., NSDI'11
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Architecture 1/2

Hadoop MPI ZooKeeper
scheduler scheduler quorum
- #r _____ ¥ _ B A i
Mesos | Standby . Standby |
|
master I master | __master |
Mesos slave | | Mesos slave Mesos slave
Hadoop MPI Hadoop MPI
executor executor executor| executor

task task task task
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Architecture 2/2

MapReduce Spark Flink
Scheduler Scheduler Scheduler

>

Partial State

Mesos Master

Data Data Data Data
node node node node
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Pros and Cons

ePros:
- Scale out by adding schedulers.
- Concurrent scheduling of tasks.

eCoONs:

- Suboptimal use of the cluster. Especially when there exist
long running tasks.
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Shared State Scheduler

eOmega: flexible, scalable schedulers for large
compute clusters, M. Schwarzkopf & al. EuroSys’13
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Architecture

Shared state
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Architecture 2/2

MapReduce
Scheduler

Spark Flink

>

Scheduler Scheduler

Global state

State Manager

Data Data Data Data
node node node node
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Architecture 2/2
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Scheduler
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Pros and Cons

ePros
- Scalable.
- Good use of the cluster resources.

eCoONs

- Unpredictable interaction between the different
schedulers’ policies.
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Approach

Resource choice

Comparison

Interference

Alloc. granularity

Cluster-wide policies

Monolithic

Statically partitioned
Two-level (Mesos)
Shared-state (Omega)
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all available
fixed subset
dynamic subset
all available

none (serialized)
none (partitioned)
pessimistic
optimistic

global policy
per-partition policy
hoarding
per-scheduler policy
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strict priority (preemption)

scheduler-dependent
strict fairness

free-for-all, priority preemption
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Performance comparison 1/
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Performance Comparison 2/

What the previous evaluation does not show about the Two-level

scheduling:
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(¢) Unscheduled jobs.
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Performance Comparison 3/

Trying to handle more batch jobs in Omega by running several batch
schedulers in parallel.
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eTwo-Level and Shared state Schedulers scale
better.

eShared state Schedulers use the cluster resources
more optimally than Two-level Schedulers.

eMonolithic Scheduler are a potential Bottleneck.

eBut as Monolithic schedulers are easier to design,
allow finer allocation of resources and more
advance scheduling policies, they are the ones
used in practice.

06/05/2015 Managing large clusters resources, Gautier Berthou 35




Making Yarn more scalable

¢HOPS YARN: a one and a half level scheduler
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Hadoop Yarn HA Imp!~~
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Hops Yarn HA Imple
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MySQL Cluster (NDB) — Shared Nothing DB

e Distributed, In-memory
e 2-Phase Commit
- Replicate DB, not the Log!
e Real-time
- Low TransactionInactive timeouts
e Commodity Hardware

e Scales out

- Millions of transactions/sec
- TB-sized datasets (48 nodes)

SQL AP NDB API e Split-Brain solved with
Arbitrator Pattern

e SQL and Native Blocking/Non-
Blocking APIs

30+ million update transactions/second
on a 30-node cluster
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Standby is boring
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Dificulties 1/2
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Difficulties 2/2

ePulling from the database when the state is
needed is inefficient.

eHaving an independent thread that regularly pull
from the database is difficult to tune and cause
lock problems.

06/05/2015 Managing large clusters resources, Gautier Berthou 42




Solution

eLuckily NDB has an event API.
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With streaming N

MySal
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Conclusion

eThere exists three architectures for large cluster
resource scheduling:
- Monolithic
- Two-levels
- Shared State

e Each of these architectures has pros and cons.

eThe monolithic architectur is the one presently used
because it is easyer to use and develop.

oAt KTH and SICS we are exploring the possibilities
for a new architecture ensuring more scalability
while keeping the advantages of the monolithic
architecture.
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