
ID2210

Jim Dowling

Introduction to Hadoop

Large Scale Distributed Computing

In #Nodes

- BitTorrent (millions)

- Peer-to-Peer

In #Instructions/sec

- Teraflops, Petaflops, Exascale

- Super-Computing

In #Bytes stored

- Facebook: 300+ Petabytes (April 2014)*

- Hadoop

In #Bytes processed/time

- Google processed 24 petabytes of data per day in 2013

- Colossus, Spanner, BigQuery, BigTable, Borg, Omega, ..

*http://www.adweek.com/socialtimes/orcfile/434041

Where does Big Data Come From?

•On-line services

•Scientific instruments

•Whole genome sequencing

•Internet-of-Things

PBs per day

PBs per minute

250 GB per person

Will be lots!

What is Big Data?

Big DataSmall Data

Why is Big Data “hot”?

•Companies like Google and Facebook have shown
how to extract value from Big Data

Orbitz looks for higher prices
from Safari users [WSJ’12]

Why is Big Data “hot”?

•Big Data helped Obama win the 2012 election
through data-driven decision making*

*http://swampland.time.com/2012/11/07/inside-the-secret-world-of-quants-and-data-crunchers-who-helped-obama-win/

Data said: middle-aged females like contests, dinners and celebrity

http://swampland.time.com/2012/11/07/inside-the-secret-world-of-quants-and-data-crunchers-who-helped-obama-win/

Why is Big Data Important in Science?

•In a wide array of academic fields, the ability to
effectively process data is superseding other more
classical modes of research.

“More data trumps better algorithms”*

*“The Unreasonable Effectiveness of Data” [Halevey et al 09]

4 Vs of Big Data

•Volume

•Velocity

•Variety

•Veracity/Variability/Value

A quick historical tour of data systems

Batch Sequential Processing

IBM 082 Punch Card Sorter

Scan → Sort

No Fault Tolerance 

1960s

First Database Management Systems

COBOL

DBMS

Hierarchical and Network
Database Management Systems

You had to know what data you want, and how to find it

Early DBMS’ were Disk-Aware

Codd's Relational Model

Just tell me
the data you want,

the system will
find it.

SystemR

Views

Relations

Indexes

Disk

Structured Query

Language

Disk Access

Methods

CREATE TABLE Students(

id INT PRIMARY_KEY,

firstname VARCHAR(96),

lastname VARCHAR(96)

);

SELECT * FROM Students

WHERE id > 10;

?

•Each program
produces the same
result for the Query.

•Each program has
different performance
characteristics
depending on changes
in the data
characteristics

Finding the Data using a Query Optimizer

Data Characteristics Change

D
at

a
C

h
ar

ac
te

ri
st

ic
s

C
h
an

g
e

Each color represents a program in this plan diagram

What if I have lots of Concurrent Queries?

•Data Integrity using Transactions*

*Jim Gray, ”The Transaction Concept: Virtues and Limitation”

ACID
Atomicity Consistency Isolation Durability

In the 1990s
Data Read Rates Increased Dramatically

Distribute within a Data Center

Master-Slave Replication

Data-location awareness is back:
Clients read from slaves, write to master.
Possibility of reading stale data.

In the 2000s
Data Write Rates Increased Dramatically

Unstructured Data explodes

Source: IDC whitepaper. As the Economy contracts, the Digital Universe Explodes. 2009

Key-Value stores don’t do Big Data yet.
Existing Big Data systems currently only

work for a single Data Centre.*

*The usual Google Exception applies

Storage and Processing of Big Data

What is Apache Hadoop?

Huge data sets and large files

 Gigabytes files, petabyte data sets

 Scales to thousands of nodes on commodity hardware

No Schema Required

 Data can be just copied in, extract required columns later

 Fault tolerant

Network topology-aware, Data Location-Aware

Optimized for analytics: high-throughput file access

MapReduce

Hadoop Filesystem

Application

Hadoop (version 1)

HDFS: Hadoop Filesystem

write “/crawler/bot/jd.io/1”

Name node

21 3

54 6 5 66

31 4 21 3 42 5

Heartbeats Rebalance

5

2

1 3

Under-replicated blocks

Re-replicate

blocks

Data nodesData nodes

HDFS v2 Architecture

30

DataNodes

HDFS Client

Journal Nodes Zookeeper Nodes

Snapshot

Node
NameNode Standby

NameNode

Active-Standby Replication of NN Log

Agreement on the Active NameNode

Faster Recovery - Cut the NN Log

HopsFS Architecture

31

NameNodes

NDB

Leader

HDFS Client

HopsFS Client

Load

Balancer

DataNodes

Processing Big Data

Big Data Processing with No Data Locality

Job(“/crawler/bot/jd.io/1”)

Workflow Manager

21 3 5 6 53 6 21 4 41 52 34 6

Compute Grid Node Job

submit

This doesn’t scale.
Bandwidth is the bottleneck

1 6 3 2 54

MapReduce – Data Locality

Job(“/crawler/bot/jd.io/1”)

Job Tracker

21 3 5 6 53 6 21 4 41 52 34 6

Task
Tracker

Task
Tracker

Task
Tracker

Task
Tracker

Task
Tracker

Task
Tracker

submit

Job Job Job Job Job Job

DN DN DN DN DN DN

R RR R = resultFile(s)

MapReduce*

1. Programming Paradigm

2. Processing Pipeline (moving computation to data)

*Dean et al, OSDI’04

MapReduce Programming Paradigm

map(record) ->

{(keyi, valuei), .., (keyl, valuel)}

reduce((keyi, {valuek, .., valuey}) -> output

MapReduce Programming Paradigm

•Also found in:

Functional programming languages

MongoDB

Cassandra

Example: Building a Web Search Index

map(url, doc) ->

{(termi, url),(termm, url)}

reduce((term,{urlk,..,urly}) ->

(term, (posting list of url, count))

Example: Building a Web Search Index

map((“jd.io”, “A hipster website with news”))

->

{

emit(“a”, “jd.io”),

emit(“hipster”, “jd.io”),

emit(“website”, “jd.io”),

emit(“with”, “jd.io”),

emit(“news”, “jd.io”)

}

Example: Building a Web Search Index

map((“hn.io”, “Hacker hipster news”))

->

{

emit(“hacker”, “hn.io”),

emit(“hipster”, “hn.io”),

emit(“news”, “hn.io”)

}

Example: Building a Web Search Index

reduce(“hipster”, { “jd.io”, “hn.io” }) ->

(“hipster”, ([“jd.io”, “hn.io”], 2))

Example: Building a Web Search Index

reduce(“website”, { “jd.io”}) ->

(“website”, ([“jd.io”], 1))

Example: Building a Web Search Index

reduce(“news”, { “jd.io”, “hn.io” }) ->

(“news”, ([“jd.io”, “hn.io”], 2))

Map Phase

MapReduce

21 3 53 6 21 4 41 55 62 34 6

Mapper1

DN DN DN DN DN DN

map(url, doc) -> {(termi, url),(terml, url)}

Mapper6 Mapper4 Mapper3 Mapper2 Mapper5

1' 6’ 3’ 2’ 5’4’

Shuffle Phase

MapReduce

DN DN DN DN DN DN

group by term

1' 6’ 3’ 2’ 5’4’

A-D E-H I-L M-P Q-T U-Z

Shuffle over the Network using a Partitioner

Reduce Phase

MapReduce

DN DN DN DN DN DN

reduce((term,{urlk,urly}) ->

(term, (posting list of url, count))

A-D E-H I-L M-P Q-T U-Z

A’-D’ E’-H’ I’-L’ M’-P’ Q’-T’ U’-Z’

Reducer1 Reducer2 Reducer3 Reducer4 Reducer5 Reducer6

Hadoop 2.x

Hadoop 1.x

HDFS
(distributed storage)

MapReduce
(resource mgmt, job scheduler,

data processing)

Hadoop 2.x

MapReduce
(data processing)

HDFS
(distributed storage)

YARN
(resource mgmt, job scheduler)

Others
(spark, mpi, giraph, etc)

Single Processing Framework

Batch Apps

Multiple Processing Frameworks

Batch, Interactive, Streaming …

MapReduce and MPI as YARN Applications

[Murthy et. al, Apache Hadoop YARN: Yet Another Resource Negotiator”, SOCC’13]

Data Locality in Hadoop v2

Limitations of MapReduce [Zaharia’11]

Map

Map

Map

Reduce

Reduce

Input Output

•MapReduce is based on an acyclic data flow from
stable storage to stable storage.

- Slow writes data to HDFS at every stage in the pipeline

•Acyclic data flow is inefficient for applications that
repeatedly reuse a working set of data:

-Iterative algorithms (machine learning, graphs)

-Interactive data mining tools (R, Excel, Python)

val input= TextFile(textInput)

val words = input

.flatMap

{ line => line.split(” ”) }

val counts = words

.groupBy

{ word => word }

.count()

val output = counts

.write (wordsOutput,

RecordDataSinkFormat())

val plan = new ScalaPlan(Seq(output))

Iterative Data Processing Frameworks

Spark – Resiliant Distributed Datasets

•Allow apps to keep working sets in memory for
efficient reuse

•Retain the attractive properties of MapReduce

- Fault tolerance, data locality, scalability

Resilient distributed datasets (RDDs)

- Immutable, partitioned collections of objects

- Created through parallel transformations (map, filter,
groupBy, join, …) on data in stable storage

- Can be cached for efficient reuse

Actions on RDDs

- Count, reduce, collect, save, …

Example: Log Mining
Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia in
<1 sec (vs 20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Apache Flink – DataFlow Operators

Reduce

Join

Map

Reduce

Map

Iterate

Source

Sink

Source

Map Iterate Project

Reduce Delta Iterate Aggregate

Join Filter Distinct

CoGroup FlatMap Vertex Update

Union GroupReduce Accumulators

*Alexandrov et al.: “The Stratosphere Platform for Big Data Analytics,” VLDB Journal 5/2014

Flink

Built-in vs. driver-based looping

Step Step Step Step Step

Client

Step Step Step Step Step

Client

map

join

red.

join

Loop outside the system,
in driver program

Iterative program looks
like many independent
jobs

Dataflows with feedback
edges

System is iteration-
aware, can optimize the
job

Flink

Hadoop on the Cloud

•Cloud Computing traditionally separates storage and
computation.

OpenStack

Nova (Compute)

Glance (VM Images)

Swift (Object Storage)

Amazon Web Services

EC2 Elastic Block Storage

S3

Data Locality for Hadoop on the Cloud

•Cloud hardware
configurations should
support data locality

•Hadoop’s original topology
awareness breaks

• Placement of >1 VM
containing block replicas for
the same file on the same
physical host increases
correlated failures

•VMWare introduced a
NodeGroup aware topology

• HADOOP-8468

Conclusions

•Hadoop is the open-source enabling technology for
Big Data

•YARN is rapidly becoming the operating system for
the Data Center

•Apache Spark and Flink are in-memory processing
frameworks for Hadoop

References

•Dean et. Al, “MapReduce: Simplified Data Processing
on Large Clusters”, OSDI’04.

•Schvachko, “HDFS Scalability: The limits to growth”,
Usenix, :login, April 2010.

•Murthy et al, “Apache Hadoop YARN: Yet Another
Resource Negotiator”, SOCC’13.

•“Processing a Trillion Cells per Mouse Click”,
VLDB’12

