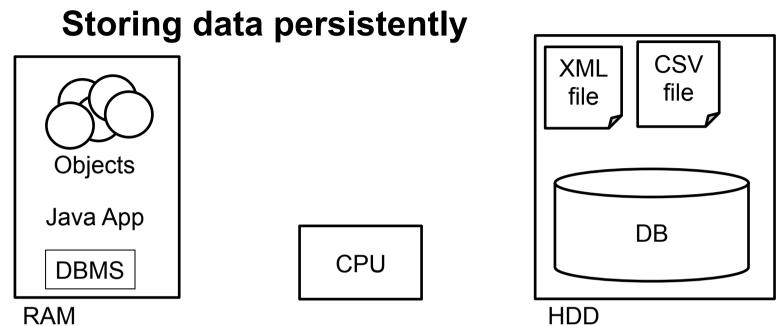

KTH ROYAL INSTITUTE OF TECHNOLOGY

Lecture #11 Relational Database Systems



Contents

Storing data Relational Database Systems Entity Relationship diagrams Normalisation of ER diagrams Tuple Relational Calculus

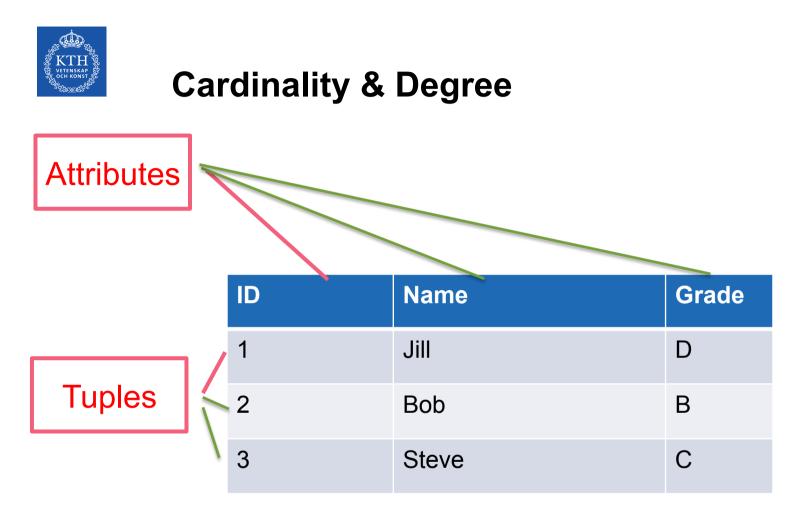
During execution, RAM is used to store our data Files can be read and write for persistent storage But what if we want to access the data in a more flexible way? Reading single posts, adding data, removing data etc.

Databases Database Management Systems (DBMS)

The idea of data storage developed gradually when computing capabilities grew – file storage was simply not enough

Various models to link and index that data were developed:

- Hierarchical storage (Tree-like struture)
- Network storage (cross references between data items)
- Relational storage (the winning model, used presently)

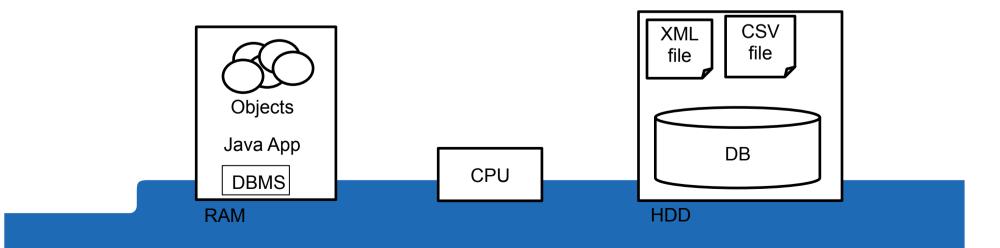


Relational data storage

Data is organised in tables of two dimensions Rows & Columns

Tables are known as "Relations" Rows are "Tuples" Columns are "Attributes"

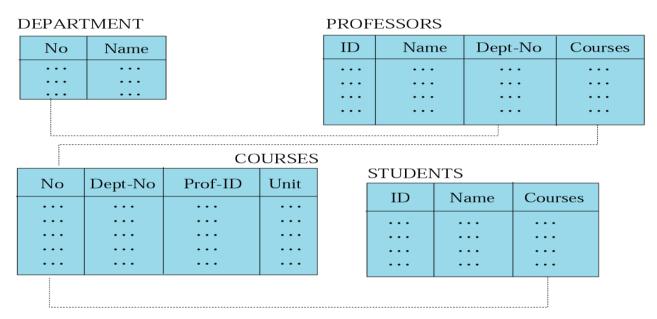
ID	Name	Grade
1	Jill	D
2	Bob	В
3	Steve	С



The cardinality of a Relation is its number of tuples (rows) The degree of a Relation is its number of attributes (columns)

What are these tables really?

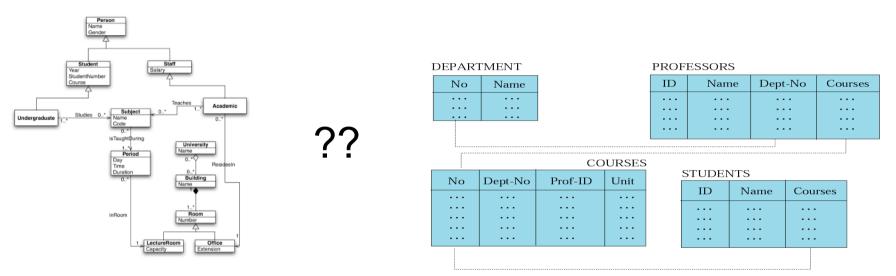
- 1. Data is stored on the computer's HDD as bits (of course)
- 2. The data is struuctred according to some scheme that is efficient for the disk and CPU's access to the data
- 3. When we people want to write a (Java) program to manipulate the data, we think of it, and access it in the form of tables
- 4. The DBMS program translate from the tables to actual data storage (which is logical to the CPU but not to us)


Contents

Storing data Relational Database Systems Entity Relationship diagrams Normalisation of ER diagrams Tuple Relational Calculus

Entity Relationship Diagrams

"Relations between Relations"


By defining attributes as "Keys" we can relate Tuples from different Relations to each other.

E-R diagrams vs. Class diagrams

But aren't E-R diagrams the same as Class diagrams?

In a way, they are very similar, but

- ER only data, no methods
- ER No OO concepts (inheritance, aggregation, etc.)
- Classes No Keys

Contents

Storing data Relational Database Systems Entity Relationship diagrams Normalisation of ER diagrams Tuple Relational Calculus

Good relations

Is this a good relation?

Part	Qt	Warehouse	Adress
Wheel	23	Building2	Main St 12
Wheel	12	Building1	Diagon Alley 3
Seat	9	Building1	Diagon Alley 3

Is this a good relation?

E-R Diagrams "must" be Normalised

- Normalisation of E-R diagrams is like "Good Programming Style" but for Data
- It enables more efficient access to data and more efficient storage
- Reduces the risk of error in data.
- In Theory 5 levels of Normality (or Normal forms) exist
 - 1st Normal form
 - 2nd Normal form
 - 3rd Normal Form
 - 4th Normal Form
 - 5th Normal Form

First Normal Form

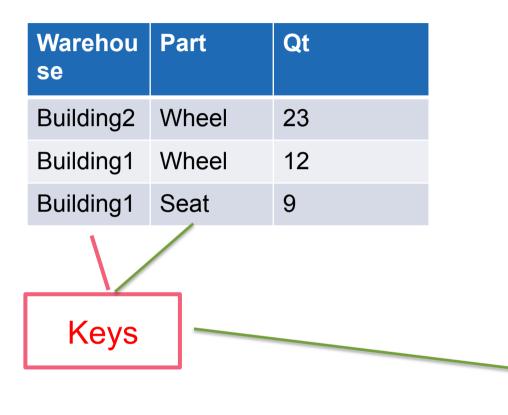
The First Normal is basic housekeeping.

- All Tuples in a Relation must have the same number of attributes.
- Or The degree of all Tuples must be the same.

This borders on the obvious under the definition of a Relational Database, since this is the definition of a Relation

Second Normal Form

Only relevant when the keys are composite, i.e., consists of several attributes


To fulfill Second normal form non-key fields cannot have facts about a part of a key.

Warehouse	Part	Adress	Qt
Building2	Wheel	Main St 12	23
Building1	Wheel	Diagon Alley 3	12
Building1	Seat	Diagon Alley 3	9

Keys

Normalised to 2nd Normal Form

Warehouse	Adress
Building1	Diagon Alley 3
Building2	Main St 12

Third Normal Form

In Third Normal Form, a non-key attribute must not hold information about another non-key attribute

Course	Professor	Office
EH2745	Nordström	Osquldas väg 10, floor 7
EH2751	Nordström	Osquldas väg 10, floor 7
EJ2301	Soulard	Teknikringen 33, floor 1
EG2200	Amelin	Reknikringen 35, floor 2

Key

Normalised to 3rd Normal form

Course	Professor
EH2745	Nordström
EH2751	Nordström
EJ2301	Soulard
EG2200	Amelin

Professor	Office
Nordström	Osquldas väg 10, floor 7
Amelin	Teknikringen 33, floor 2
Soulard	Teknikringen 33, floor 1

Contents

Storing data Relational Database Systems Entity Relationship diagrams Normalisation of ER diagrams Tuple Relational Calculus

Tuple Relational Calculus

With the definitions (Relation, Tuple, Attribute) above we can define a number of basic operations on relations

Insert Delete Update Select Project Join Union Intersection Difference

Insert

Insert is a unary operation – it operates on a single Relation It adds a Tuple to a Relation

ID	Name	Grade
1	Jill	D
2	Bob	В
3	Steve	С

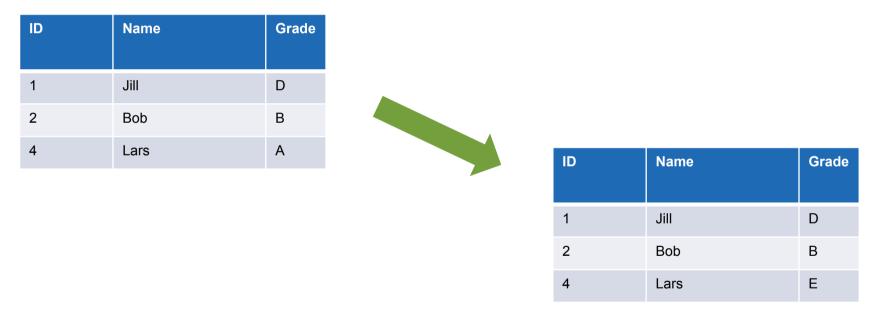
Insert t in R

ID	Name	Grade
1	Jill	D
2	Bob	В
3	Steve	С
4	Lars	А

Delete

Delete is a unary operation – it operates on a single Relation It deletes a Tuple fulfilling criteria from a Relation

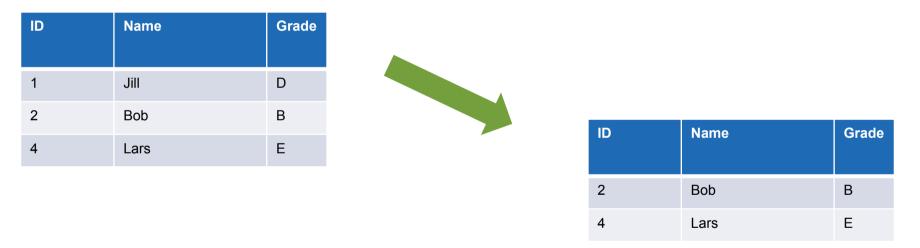
ID	Name	Grade	
1	Jill	D	
2	Bob	В	
3	Steve	С	
4	Lars	А	


ID	Name	Grade
1	Jill	D
2	Bob	В
4	Lars	А

Delete t where a=x from R

Update

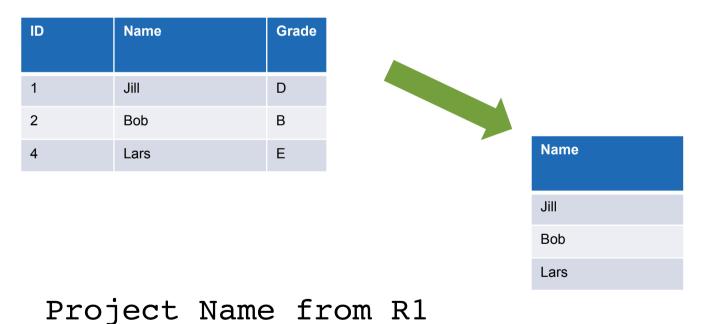
Update is a unary operation – it operates on a single Relation It modifies an attribute in Tuple fulfilling criteria in a Relation



Update t.a2=data where t.a1=x in R

Select

Select is a unary operation – it operates on a single Relation The Select operation creates a new relation R2 from relation R1 The Tuples inR1 is a subset of R2



Select * from R1 where ID >1

Project

Project is a unary operation – it operates on a single Relation The Project operation creates a new relation R2 from relation R1 The Attributes in R1 is a subset of R2

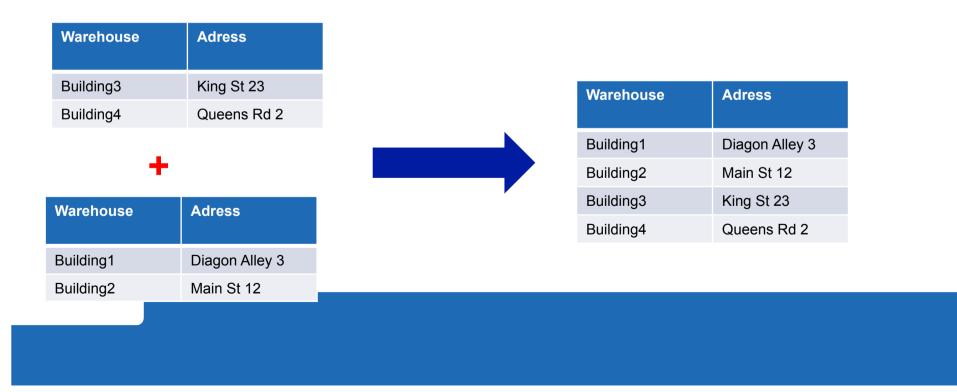
Join

Join is a binary operation – it operates two Relations The Join operation creates a new relation R3 from relations R1 & R2 Based on common attributes (keys)

Course	Professor
EH2745	Nordström
EH2751	Nordström
EJ2301	Soulard
EG2200	Amelin
Professor	Office
Nordström	Osquldas väg 10, floor 7
Amelin	Teknikringen 33, floor 2
Soulard	Teknikringen 33, floor 1

Not Normalised??

Course	Professor	Office
EH2745	Nordström	Osquldas väg 10, floor 7
EH2751	Nordström	Osquldas väg 10, floor 7
EJ2301	Soulard	Teknikringen 33, floor 1
EG2200	Amelin	Reknikringen 35, floor 2


Intermediate result for analysis

Union

A binary operation – it operates on two Relations R1 and R2 Creates a new relation R3 in which each tuple is either in R1, in the R2, or in both R1 and R2.

The two relations must have the same attributes.

Intersection

A binary operation – it operates on two Relations R1 and R2 Creates a new relation R3 in which each tuple is in both R1 and R2. The two relations must have the same attributes.

Warehouse	Adress
Building1	Diagon Alley 3
Building4	Queens Rd 2
Warehouse	Adress
Duilding1	Diagon Allow 2
Building1	Diagon Alley 3
Building2	Main St 12

Difference

A binary operation – it operates on two Relations R1 and R2 Creates a new relation R3 in which each tuple is in R1 but not in R2. The two relations must have the same attributes.

Warehouse	Adress
Building1	Diagon Alley 3
Building4	Queens Rd 2
-	
Warehouse	Adress
Marchieuce	
Building1	Diagon Alley 3
Building2	Main St 12

Contents

Storing data Relational Database Systems Entity Relationship diagrams Normalisation of ER diagrams Tuple Relational Calculus

Now you can try this with SQL in MySQL

