
Signature Schemes PKIs Pseudo-random Generators

Lecture 11

Douglas Wikström
KTH Stockholm
dog@csc.kth.se

April 24, 2015

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Signature Schemes

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Signature Scheme

◮ Gen generates a key pair (pk, sk).

◮ Sig takes a secret key sk and a message m and computes a
signature σ.

◮ Vf takes a public key pk, a message m, and a candidate
signature σ, verifies the candidate signature, and outputs a
single-bit verdict.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Existential Unforgeability

Definition. A signature scheme (Gen,Sig,Vf) is secure against
existential forgeries if for every polynomial time algorithm and a
random key pair (pk, sk)← Gen(1n),

Pr
[

ASigsk(·)(pk) = (m, σ) ∧ Vfpk(m, σ) = 1 ∧ ∀i : m 6= mi

]

is negligible where mi is the ith query to Sigsk(·).

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Proof of Knowledge of Exponent

In an identification scheme one party convinces another that it
holds some special token.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Proof of Knowledge of Exponent

In an identification scheme one party convinces another that it
holds some special token.

◮ Let Gq be a group of prime order q with generator g .

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Proof of Knowledge of Exponent

In an identification scheme one party convinces another that it
holds some special token.

◮ Let Gq be a group of prime order q with generator g .

◮ Let x ∈ Zq and define y = gx .

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Proof of Knowledge of Exponent

In an identification scheme one party convinces another that it
holds some special token.

◮ Let Gq be a group of prime order q with generator g .

◮ Let x ∈ Zq and define y = gx .

◮ Can we prove knowledge of x without disclosing anything
about x?

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Schnorr’s Signature Scheme (1/3)

1. The prover chooses r ∈ Zq randomly and hands α = g r to the
verifier.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Schnorr’s Signature Scheme (1/3)

1. The prover chooses r ∈ Zq randomly and hands α = g r to the
verifier.

2. The verifier chooses c ∈ Zq randomly and hands it to the
prover.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Schnorr’s Signature Scheme (1/3)

1. The prover chooses r ∈ Zq randomly and hands α = g r to the
verifier.

2. The verifier chooses c ∈ Zq randomly and hands it to the
prover.

3. The prover computes d = cx + r mod q and hands d to the
verifier.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Schnorr’s Signature Scheme (1/3)

1. The prover chooses r ∈ Zq randomly and hands α = g r to the
verifier.

2. The verifier chooses c ∈ Zq randomly and hands it to the
prover.

3. The prover computes d = cx + r mod q and hands d to the
verifier.

4. The verifier accepts if y cα = gd .

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Schnorr’s Signature Scheme (1/3)

1. The prover chooses r ∈ Zq randomly and hands α = g r to the
verifier.

2. The verifier chooses c ∈ Zq randomly and hands it to the
prover.

3. The prover computes d = cx + r mod q and hands d to the
verifier.

4. The verifier accepts if y cα = gd .

Suppose that a machine convinces us in the protocol with
probability δ. Does it mean that it knows x such that y = gx?

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Schnorr’s Signature Scheme (2/3)

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Schnorr’s Signature Scheme (2/3)

1. Run the machine to get α.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Schnorr’s Signature Scheme (2/3)

1. Run the machine to get α.

2. Complete the interaction twice using the same α, once for a
challenge c and once for a challenge c ′, where c , c ′ ∈ Zq are
chosen randomly.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Schnorr’s Signature Scheme (2/3)

1. Run the machine to get α.

2. Complete the interaction twice using the same α, once for a
challenge c and once for a challenge c ′, where c , c ′ ∈ Zq are
chosen randomly.

3. Repeat from (1) until the resulting interactions (α, c , d) and
(α, c ′, d ′) are accepting and c 6= c ′.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Schnorr’s Signature Scheme (2/3)

1. Run the machine to get α.

2. Complete the interaction twice using the same α, once for a
challenge c and once for a challenge c ′, where c , c ′ ∈ Zq are
chosen randomly.

3. Repeat from (1) until the resulting interactions (α, c , d) and
(α, c ′, d ′) are accepting and c 6= c ′.

4. Note that:

y c−c′ =
y c

y c
′
=

y cα

y c
′

α
=

gd

gd ′
= gd−d ′

which gives the logarithm x = (d − d ′)(c − c ′)−1 mod q such
that y = gx .

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Schnorr’s Signature Scheme (3/3)

◮ Anybody can sample c , d ∈ Zq randomly and compute
α = gd/y c .

◮ The resulting tuple (α, c , d) has exactly the same distribution
as the transcript of an interaction!

Such protocols are called (honest verifier) zero-knowledge proofs
of knowledge.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Schnorr’s Signature Scheme In ROM

Let H : {0, 1}∗ → Zq be a random oracle.

◮ Gen chooses x ∈ Zq randomly, computes y = gx and outputs
(pk, sk) = (y , x).

◮ Sig does the following on input x and m:

1. it chooses r ∈ Zq randomly and computes α = g r ,

2. it computes c = H(y , α,m),

3. it computes d = cx + r mod q and outputs (α, d).

◮ Vf takes the public key y , a message m, and a candidate
signature (α, d), and accepts iff yH(y ,α,m)α = gd .

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Provably Secure Signature Schemes

Provably secure signature schemes exists if one-way functions exist
(in plain model without ROM), but the construction is more
involved and typically less efficient.

Provably secure signature schemes are rarely used in practice!

Standards used in practice: RSA Full Domain Hash, DSA,
EC-DSA. The latter two may be viewed as variants of Schnorr
signatures.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Problem

◮ We have constructed public-key cryptosystems and signature
schemes.

◮ Only the holder of the secret key can decrypt ciphertexts and
sign messages.

◮ How do we know who holds the secret key corresponding to a
public key?

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Signing Public Keys of Others

◮ Suppose that Alice computes a signature
σA,B = SigskA(pkB ,Bob) of Bob’s public key pkB and his
identity and hands it to Bob.

◮ Suppose that Eve holds Alice’s public key pkA.

◮ Then anybody can hand (pkB , σA,B) directly to Eve, and
Eve will be convinced that pkB is Bob’s key (assuming she
trusts Alice).

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Certificate

◮ A certificate is a signature of a public key along with some
information on how the key may be used, e.g., it may allow
the holder to issue certificates.

◮ A certificate is valid for a given setting if the signature is valid
and the usage information in the certificate matches that of
the setting.

◮ Some parties must be trusted to issue certificates. These
parties are called Certificate Authorities (CA).

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Certificate Chains

A CA may be “distributed” using in certificate chains.

◮ Suppose that Bob holds valid certificates

σ0,1, σ1,2, . . . , σn−1,n

where σi−1,i is a certificate of pkPi
by Pi−1.

◮ Who does Bob trust?

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Randomness

◮ Everything we have done so far requires randomness!

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Randomness

◮ Everything we have done so far requires randomness!

◮ Can we “generate” random strings?

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Physical Randomness and Deterministic Algorithms

◮ We could flip actual coins. This would be extremely
impractical and slow (and booring unless you are Rain man).

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Physical Randomness and Deterministic Algorithms

◮ We could flip actual coins. This would be extremely
impractical and slow (and booring unless you are Rain man).

◮ We could generate “physical” randomness using hardware,
e.g., measuring radioactive decay

◮ Slow or expensive.
◮ Hard to verify and trust.
◮ Biased output.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Physical Randomness and Deterministic Algorithms

◮ We could flip actual coins. This would be extremely
impractical and slow (and booring unless you are Rain man).

◮ We could generate “physical” randomness using hardware,
e.g., measuring radioactive decay

◮ Slow or expensive.
◮ Hard to verify and trust.
◮ Biased output.

◮ We could use a deterministic algorithm that outputs a
“random looking string”, but would that be secure?

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Pseudo-Random Generator

A pseudo-random generator requires a short random string and
deterministically expands this to a longer “random looking”
string.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Pseudo-Random Generator

A pseudo-random generator requires a short random string and
deterministically expands this to a longer “random looking”
string.

This looks promising:

◮ Fast and cheap?

◮ Practical since it can be implemented in software or hardware?

◮ What is “random looking”?

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Pseudo-Random Generator

Definition. An efficient algorithm PRG is a pseudo-random
generator (PRG) if there exists a polynomial p(n) > n such that
for every polynomial time adversary A, if a seed s ∈ {0, 1}n and a
random string u ∈ {0, 1}p(n) are chosen randomly, then

|Pr[A
(

PRG(s)
)

= 1]− Pr[A(u) = 1]|

is negligible.

Informally, A can not distinguish PRG(s) from a truly random
string in {0, 1}p(n) .

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Increasing Extension (1/2)

Before we consider how to construct a PRG we consider what the
definition gives us:

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Increasing Extension (1/2)

Before we consider how to construct a PRG we consider what the
definition gives us:

◮ Suppose that there exists a PRG that extends its output by a
single bit.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Increasing Extension (1/2)

Before we consider how to construct a PRG we consider what the
definition gives us:

◮ Suppose that there exists a PRG that extends its output by a
single bit.

◮ This would not be very useful to us, e.g., to generate a
random prime we need many random bits.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Increasing Extension (1/2)

Before we consider how to construct a PRG we consider what the
definition gives us:

◮ Suppose that there exists a PRG that extends its output by a
single bit.

◮ This would not be very useful to us, e.g., to generate a
random prime we need many random bits.

◮ Can we use the given PRG to construct another PRG which
extends its output more?

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Increasing Extension (2/2)

Construction. Let PRG be a pseudo-random generator. We let
PRGt be the algorithm that takes s−1 ∈ {0, 1}

n as input,
computes s0, s2, . . . , st−1 and b0, . . . , bt−1 as

(si , bi ) = PRG(si−1)

and outputs (b0, . . . , bt−1).

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Increasing Extension (2/2)

Construction. Let PRG be a pseudo-random generator. We let
PRGt be the algorithm that takes s−1 ∈ {0, 1}

n as input,
computes s0, s2, . . . , st−1 and b0, . . . , bt−1 as

(si , bi ) = PRG(si−1)

and outputs (b0, . . . , bt−1).

Theorem. Let p(n) be a polynomial and PRG a pseudo-random
generator. Then PRGp(n) is a pseudo-random generator that on

input s ∈ {0, 1}n outputs a string in {0, 1}p(n).

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Increasing Extension (2/2)

Construction. Let PRG be a pseudo-random generator. We let
PRGt be the algorithm that takes s−1 ∈ {0, 1}

n as input,
computes s0, s2, . . . , st−1 and b0, . . . , bt−1 as

(si , bi ) = PRG(si−1)

and outputs (b0, . . . , bt−1).

Theorem. Let p(n) be a polynomial and PRG a pseudo-random
generator. Then PRGp(n) is a pseudo-random generator that on

input s ∈ {0, 1}n outputs a string in {0, 1}p(n).

We can go on “forever”!

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Random String From Random Oracle

Theorem. If F : {0, 1}n → {0, 1}m is a random function, then
(F (0),F (1),F (2), . . . ,F (t − 1)) is a tm-bit string.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Random String From Random Oracle

Theorem. If F : {0, 1}n → {0, 1}m is a random function, then
(F (0),F (1),F (2), . . . ,F (t − 1)) is a tm-bit string.

Can we do this using a pseudo-random function?

Can we replace the random function by SHA-2?

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Pseudo-Random Function

Recall the definition of a pseudo-random function.

Definition. A family of functions F : {0, 1}k × {0, 1}n → {0, 1}n

is pseudo-random if for all polynomial time oracle adversaries A

∣

∣

∣

∣

Pr
K

[

AFK (·) = 1
]

− Pr
R:{0,1}n→{0,1}n

[

AR(·) = 1
]

∣

∣

∣

∣

is negligible.

DD2448 Foundations of Cryptography April 24, 2015



Signature Schemes PKIs Pseudo-random Generators

Pseudo-Random Generator From Pseudo-Random Function

Theorem. Let {FK}K∈{0,1}k be a pseudo-random function for a
random choice of K . Then the PRG defined by:

PRG(s) = (Fs(0),Fs(1),Fs (2), . . . ,Fs(t))

is a pseudo-random generator.

DD2448 Foundations of Cryptography April 24, 2015


	Signature Schemes
	PKIs
	Pseudo-random Generators

