Lecture 10

Douglas Wikström KTH Stockholm dog@csc.kth.se

April 17, 2015

Signature Schemes

Digital Signature

- ▶ A digital signature is the **public-key** equivalent of a MAC; the receiver verifies the integrity and authenticity of a message.
- Does a digital signature replace a real handwritten one?

- ▶ Generate RSA keys ((N, e), (p, q, d)).
- ▶ To sign a message $m \in \mathbb{Z}_N$, compute $\sigma = m^d \mod N$.
- ▶ To verify a signature σ of a message m, verify that $\sigma^e = m \mod N$.

Are Textbook RSA Signatures any good?

- Are Textbook RSA Signatures any good?
- ▶ If σ is a signature of m, then $\sigma^2 \mod N$ is a signature of $m^2 \mod N$.

- Are Textbook RSA Signatures any good?
- ▶ If σ is a signature of m, then $\sigma^2 \mod N$ is a signature of $m^2 \mod N$.
- ▶ If σ_1 and σ_2 are signatures of m_1 and m_2 , then $\sigma_1\sigma_2$ mod N is a signature of m_1m_2 mod N

- Are Textbook RSA Signatures any good?
- ▶ If σ is a signature of m, then $\sigma^2 \mod N$ is a signature of $m^2 \mod N$.
- ▶ If σ_1 and σ_2 are signatures of m_1 and m_2 , then $\sigma_1\sigma_2$ mod N is a signature of m_1m_2 mod N
- ▶ We can also pick a signature σ and compute the message it is a signature of by $m = \sigma^e \mod N$.

- Are Textbook RSA Signatures any good?
- ▶ If σ is a signature of m, then $\sigma^2 \mod N$ is a signature of $m^2 \mod N$.
- ▶ If σ_1 and σ_2 are signatures of m_1 and m_2 , then $\sigma_1\sigma_2$ mod N is a signature of m_1m_2 mod N
- ▶ We can also pick a signature σ and compute the message it is a signature of by $m = \sigma^e \mod N$.

We must be more careful!

Signature Scheme

- ► Gen generates a key pair (pk, sk).
- ▶ Sig takes a secret key sk and a message m and computes a signature σ .
- Vf takes a public key pk, a message m, and a candidate signature σ, verifies the candidate signature, and outputs a single-bit verdict.

Existential Unforgeability

Definition. A signature scheme (Gen, Sig, Vf) is **secure against existential forgeries** if for every polynomial time algorithm and a random key pair $(pk, sk) \leftarrow Gen(1^n)$,

$$\mathsf{Pr}\left[\mathsf{A}^{\mathsf{Sig}_{\mathsf{sk}}(\cdot)}(\mathsf{pk}) = (m,\sigma) \land \mathsf{Vf}_{\mathsf{pk}}(m,\sigma) = 1 \land \forall i : m
eq m_i
ight]$$

is negligible where m_i is the *i*th query to $Sig_{sk}(\cdot)$.

Trapdoor One-Way Permutations

Let $f = \{f_{\alpha}\}$ be an ensemble of **permutations** (bijections).

- ▶ Gen generates a random key pair $\alpha = (pk, sk)$.
- ▶ Eval takes pk and x as input and **efficiently evaluates** $f_{\alpha}(x)$.
- Invert takes sk and y as input and efficiently evaluates the inverse $f_{\alpha}^{-1}(y)$.

One-way if $Eval_{pk}(\cdot)$ is one-way for a random pk.

Trapdoor One-Way Permutations

Let $f = \{f_{\alpha}\}$ be an ensemble of **permutations** (bijections).

- ▶ Gen generates a random key pair $\alpha = (pk, sk)$.
- ▶ Eval takes pk and x as input and **efficiently evaluates** $f_{\alpha}(x)$.
- Invert takes sk and y as input and efficiently evaluates the inverse $f_{\alpha}^{-1}(y)$.

One-way if $Eval_{pk}(\cdot)$ is one-way for a random pk.

RSA is a trap-door permutation over \mathbb{Z}_N^* .

Trapdoor One-Way Permutations (Less Formal)

Let $f = \{f_{\alpha}\}$ be an ensemble of **permutations** (bijections).

- ▶ Gen generates a pair $(f_{\alpha}, f_{\alpha}^{-1})$.
- ▶ Eval takes pk and x as input and **efficiently evaluates** $f_{\alpha}(x)$.
- Invert takes sk and y as input and efficiently evaluates the inverse $f_{\alpha}^{-1}(y)$.

One-way if f_{α} is one-way when chosen randomly.

RSA is a trap-door permutation over \mathbb{Z}_N^* .

Full Domain Hash Signature In ROM

Let $f = \{f_{\alpha}\}$ be a trapdoor permutation (family) and let $H: \{0,1\}^* \to \{0,1\}^n$ be a random oracle.

- Gen samples a pair $(f_{\alpha}, f_{\alpha}^{-1})$.
- Sig takes f_{α}^{-1} and a message m as input and outputs $f_{\alpha}^{-1}(H(m))$.
- ▶ Vf takes f_{α} , a message m, and a candidate signature σ as input, and outputs 1 if $f_{\alpha}(\sigma) = H(m)$ and 0 otherwise.

In an **identification scheme** one party convinces another that it holds some special token.

In an **identification scheme** one party convinces another that it holds some special token.

▶ Let G_q be a group of prime order q with generator g.

In an **identification scheme** one party convinces another that it holds some special token.

- ▶ Let G_q be a group of prime order q with generator g.
- ▶ Let $x \in \mathbb{Z}_q$ and define $y = g^x$.

In an **identification scheme** one party convinces another that it holds some special token.

- ▶ Let G_q be a group of prime order q with generator g.
- ▶ Let $x \in \mathbb{Z}_q$ and define $y = g^x$.
- Can we prove knowledge of x without disclosing anything about x?

1. The prover chooses $r \in \mathbb{Z}_q$ randomly and hands $\alpha = g^r$ to the verifier.

- 1. The prover chooses $r \in \mathbb{Z}_q$ randomly and hands $\alpha = g^r$ to the verifier.
- 2. The verifier chooses $c \in \mathbb{Z}_q$ randomly and hands it to the prover.

- 1. The prover chooses $r \in \mathbb{Z}_q$ randomly and hands $\alpha = g^r$ to the verifier.
- 2. The verifier chooses $c \in \mathbb{Z}_q$ randomly and hands it to the prover.
- 3. The prover computes $d = cx + r \mod q$ and hands d to the verifier.

- 1. The prover chooses $r \in \mathbb{Z}_q$ randomly and hands $\alpha = g^r$ to the verifier.
- 2. The verifier chooses $c \in \mathbb{Z}_q$ randomly and hands it to the prover.
- 3. The prover computes $d = cx + r \mod q$ and hands d to the verifier.
- 4. The verifier accepts if $y^c \alpha = g^d$.

- 1. The prover chooses $r \in \mathbb{Z}_q$ randomly and hands $\alpha = g^r$ to the verifier.
- 2. The verifier chooses $c \in \mathbb{Z}_q$ randomly and hands it to the prover.
- 3. The prover computes $d = cx + r \mod q$ and hands d to the verifier.
- 4. The verifier accepts if $y^c \alpha = g^d$.

Suppose that a machine convinces us in the protocol with probability δ . Does it mean that it knows x such that $y = g^x$?

1. Run the machine to get α .

- 1. Run the machine to get α .
- 2. Complete the interaction twice using **the same** α , once for a challenge c and once for a challenge c', where $c, c' \in \mathbb{Z}_q$ are chosen randomly.

- 1. Run the machine to get α .
- 2. Complete the interaction twice using **the same** α , once for a challenge c and once for a challenge c', where $c, c' \in \mathbb{Z}_q$ are chosen randomly.
- 3. Repeat from (1) until the resulting interactions (α, c, d) and (α, c', d') are accepting and $c \neq c'$.

- 1. Run the machine to get α .
- 2. Complete the interaction twice using **the same** α , once for a challenge c and once for a challenge c', where $c, c' \in \mathbb{Z}_q$ are chosen randomly.
- 3. Repeat from (1) until the resulting interactions (α, c, d) and (α, c', d') are accepting and $c \neq c'$.
- 4. Note that:

$$y^{c-c'} = \frac{y^c}{y^{c'}} = \frac{y^c \alpha}{y^{c'} \alpha} = \frac{g^d}{g^{d'}} = g^{d-d'}$$

which gives the logarithm $x = (d - d')(c - c')^{-1} \mod q$ such that $y = g^x$.

- Anybody can sample $c, d \in \mathbb{Z}_q$ randomly and compute $\alpha = g^d/y^c$.
- ▶ The resulting tuple (α, c, d) has **exactly** the same distribution as the transcript of an interaction!

Such protocols are called (honest verifier) **zero-knowledge proofs of knowledge**.