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Signature Schemes

Digital Signature

◮ A digital signature is the public-key equivalent of a MAC; the
receiver verifies the integrity and authenticity of a message.

◮ Does a digital signature replace a real handwritten one?
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Signature Schemes

Textbook RSA Signature (1/2)

◮ Generate RSA keys ((N, e), (p, q, d)).

◮ To sign a message m ∈ ZN , compute σ = md mod N.

◮ To verify a signature σ of a message m, verify that
σe = m mod N.
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Textbook RSA Signature (2/2)

◮ Are Textbook RSA Signatures any good?
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Textbook RSA Signature (2/2)

◮ Are Textbook RSA Signatures any good?

◮ If σ is a signature of m, then σ2 mod N is a signature of
m2 mod N.
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Textbook RSA Signature (2/2)

◮ Are Textbook RSA Signatures any good?

◮ If σ is a signature of m, then σ2 mod N is a signature of
m2 mod N.

◮ If σ1 and σ2 are signatures of m1 and m2, then σ1σ2 mod N is
a signature of m1m2 mod N
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Textbook RSA Signature (2/2)

◮ Are Textbook RSA Signatures any good?

◮ If σ is a signature of m, then σ2 mod N is a signature of
m2 mod N.

◮ If σ1 and σ2 are signatures of m1 and m2, then σ1σ2 mod N is
a signature of m1m2 mod N

◮ We can also pick a signature σ and compute the message it is
a signature of by m = σe mod N.
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Signature Schemes

Textbook RSA Signature (2/2)

◮ Are Textbook RSA Signatures any good?

◮ If σ is a signature of m, then σ2 mod N is a signature of
m2 mod N.

◮ If σ1 and σ2 are signatures of m1 and m2, then σ1σ2 mod N is
a signature of m1m2 mod N

◮ We can also pick a signature σ and compute the message it is
a signature of by m = σe mod N.

We must be more careful!
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Signature Scheme

◮ Gen generates a key pair (pk, sk).

◮ Sig takes a secret key sk and a message m and computes a

signature σ.

◮ Vf takes a public key pk, a message m, and a candidate
signature σ, verifies the candidate signature, and outputs a
single-bit verdict.
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Signature Schemes

Existential Unforgeability

Definition. A signature scheme (Gen,Sig,Vf) is secure against

existential forgeries if for every polynomial time algorithm and a
random key pair (pk, sk)← Gen(1n),

Pr
[

ASigsk(·)(pk) = (m, σ) ∧ Vfpk(m, σ) = 1 ∧ ∀i : m 6= mi

]

is negligible where mi is the ith query to Sigsk(·).
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Trapdoor One-Way Permutations

Let f = {fα} be an ensemble of permutations (bijections).

◮ Gen generates a random key pair α = (pk, sk).

◮ Eval takes pk and x as input and efficiently evaluates fα(x).

◮ Invert takes sk and y as input and efficiently evaluates the

inverse f −1
α

(y).

One-way if Evalpk(·) is one-way for a random pk.
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Trapdoor One-Way Permutations

Let f = {fα} be an ensemble of permutations (bijections).

◮ Gen generates a random key pair α = (pk, sk).

◮ Eval takes pk and x as input and efficiently evaluates fα(x).

◮ Invert takes sk and y as input and efficiently evaluates the

inverse f −1
α

(y).

One-way if Evalpk(·) is one-way for a random pk.

RSA is a trap-door permutation over Z∗

N .
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Trapdoor One-Way Permutations (Less Formal)

Let f = {fα} be an ensemble of permutations (bijections).

◮ Gen generates a pair (fα, f
−1
α

).

◮ Eval takes pk and x as input and efficiently evaluates fα(x).

◮ Invert takes sk and y as input and efficiently evaluates the

inverse f −1
α

(y).

One-way if fα is one-way when chosen randomly.

RSA is a trap-door permutation over Z∗

N .
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Full Domain Hash Signature In ROM

Let f = {fα} be a trapdoor permutation (family) and let
H : {0, 1}∗ → {0, 1}n be a random oracle.

◮ Gen samples a pair (fα, f
−1
α

).

◮ Sig takes f −1
α

and a message m as input and outputs
f −1
α

(

H(m)
)

.

◮ Vf takes fα, a message m, and a candidate signature σ as
input, and outputs 1 if fα(σ) = H(m) and 0 otherwise.
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Signature Schemes

Proof of Knowledge of Exponent

In an identification scheme one party convinces another that it
holds some special token.
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Proof of Knowledge of Exponent

In an identification scheme one party convinces another that it
holds some special token.

◮ Let Gq be a group of prime order q with generator g .
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Proof of Knowledge of Exponent

In an identification scheme one party convinces another that it
holds some special token.

◮ Let Gq be a group of prime order q with generator g .

◮ Let x ∈ Zq and define y = gx .
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Signature Schemes

Proof of Knowledge of Exponent

In an identification scheme one party convinces another that it
holds some special token.

◮ Let Gq be a group of prime order q with generator g .

◮ Let x ∈ Zq and define y = gx .

◮ Can we prove knowledge of x without disclosing anything
about x?
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Schnorr’s Signature Scheme (1/3)

1. The prover chooses r ∈ Zq randomly and hands α = g r to the
verifier.
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Schnorr’s Signature Scheme (1/3)

1. The prover chooses r ∈ Zq randomly and hands α = g r to the
verifier.

2. The verifier chooses c ∈ Zq randomly and hands it to the
prover.
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Schnorr’s Signature Scheme (1/3)

1. The prover chooses r ∈ Zq randomly and hands α = g r to the
verifier.

2. The verifier chooses c ∈ Zq randomly and hands it to the
prover.

3. The prover computes d = cx + r mod q and hands d to the
verifier.
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Schnorr’s Signature Scheme (1/3)

1. The prover chooses r ∈ Zq randomly and hands α = g r to the
verifier.

2. The verifier chooses c ∈ Zq randomly and hands it to the
prover.

3. The prover computes d = cx + r mod q and hands d to the
verifier.

4. The verifier accepts if y cα = gd .
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Schnorr’s Signature Scheme (1/3)

1. The prover chooses r ∈ Zq randomly and hands α = g r to the
verifier.

2. The verifier chooses c ∈ Zq randomly and hands it to the
prover.

3. The prover computes d = cx + r mod q and hands d to the
verifier.

4. The verifier accepts if y cα = gd .

Suppose that a machine convinces us in the protocol with
probability δ. Does it mean that it knows x such that y = gx?
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Schnorr’s Signature Scheme (2/3)
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Schnorr’s Signature Scheme (2/3)

1. Run the machine to get α.
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Schnorr’s Signature Scheme (2/3)

1. Run the machine to get α.

2. Complete the interaction twice using the same α, once for a
challenge c and once for a challenge c ′, where c , c ′ ∈ Zq are
chosen randomly.
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Schnorr’s Signature Scheme (2/3)

1. Run the machine to get α.

2. Complete the interaction twice using the same α, once for a
challenge c and once for a challenge c ′, where c , c ′ ∈ Zq are
chosen randomly.

3. Repeat from (1) until the resulting interactions (α, c , d) and
(α, c ′, d ′) are accepting and c 6= c ′.
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Schnorr’s Signature Scheme (2/3)

1. Run the machine to get α.

2. Complete the interaction twice using the same α, once for a
challenge c and once for a challenge c ′, where c , c ′ ∈ Zq are
chosen randomly.

3. Repeat from (1) until the resulting interactions (α, c , d) and
(α, c ′, d ′) are accepting and c 6= c ′.

4. Note that:

y c−c′ =
y c

y c
′
=

y cα

y c
′

α
=

gd

gd ′
= gd−d ′

which gives the logarithm x = (d − d ′)(c − c ′)−1 mod q such
that y = gx .
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Schnorr’s Signature Scheme (3/3)

◮ Anybody can sample c , d ∈ Zq randomly and compute
α = gd/y c .

◮ The resulting tuple (α, c , d) has exactly the same distribution
as the transcript of an interaction!

Such protocols are called (honest verifier) zero-knowledge proofs

of knowledge.

DD2448 Foundations of Cryptography April 17, 2015


	Signature Schemes

