
Spring 2015

DD2457 Program Semantics and Analysis

Lab Assignment 2:

Abstract Interpretation

D. Gurov A. Lundblad

Due: 8 May 2015

1 Introduction

In this lab assignment the abstract machine developed before is adapted
to run with abstract values instead of with concrete ones, thus implement-
ing the abstract interpretation technique for program analysis developed in
Chapter 7 of the textbook, but in an operational semantics style.

The purpose of the lab assignment is, on one hand, to deepen the un-
derstanding of abstract interpretation by presenting its fundamental idea in
an alternative setting, and on the other hand, to illustrate program analysis
in a practical setting, showing that with simple means one can obtain an
analysis tool that allows various program analyses and optimisations to be
supported. In particular, the tool can discover points of potential division-
by-zero, find redundant catch-blocks when no exception can be raised in the
corresponding try-block, as well as provide support for optimisations such
as the ones discussed in class.

The focus of this assignment should lie on analyses rather than on tool
design, that is, on using the analysis tool rather than on developing it.

The assignment is carried out in teams of (at most) two.

1

2 Abstract Interpretation in Operational Style

Abstract interpretation is about executing programs with abstract values
(corresponding to sets of concrete values, therefore also called properties)
rather than with concrete ones, and using the result of the execution for
various program analyses and program transformations. If the domain of
abstract values is finite we obtain decidable analyses at the expense of pre-
cision. The usual goal is then to set up the domain so that the analysis is
safe, in the sense that the loss of precision is always on the safe side of the
analysis; what is considered to be the safe side depends on the application.

Abstract interpretation is presented in the course book in a denotational
semantics style. However, the approach can equally well be applied in a oper-
ational semantics style. In this assignment, we adapt the already developed
abstract machine for While with exceptions for the purpose of abstract in-
terpretation in abstract machine operational semantics style. Note that due
to the loss of precision in this case, we have to deal with non-deterministic
execution.

We redefine the abstract machine for computing in the abstract domain
of the detection–of–signs analysis considered in class, enriched with addi-
tional values to capture possible errors due to division by zero (see Section 4
below). Notice that we do not have to change the compilation (translation
of While to Code), but only the rules of the operational semantics of the
abstract machine so that the new abstract machine operates on abstract
values in the evaluation stack and the store. We then use the new abstract
machine to compute an abstract machine configuration graph that serves as
the basis for all our analyses. The start property state is typically the one
that maps every variable to z, the most abstract non-error value.

Next, in the configuration graph generated by an abstract machine ex-
ecution of the code for a given While statement, we group the normal
configurations (i.e. configurations with normal, non-exceptional stores) “be-
longing” to the same control point. A control point can be thought of as a
stepping point in an ordinary debugger; loosely speaking, there is a control
point at every statement (an illustrative example is provided in Section 5.1).
For each such group of configurations, we compute a property state ps by
producing the least upper bound (lub) of the stores in the group.

Further, for transitions from a normal to an exceptional state, we flag the

2

corresponding control point as a “possible exception raiser”. Then, consider
the function DA defined in Table 7.1 in the book; to support certain useful
analyses for control points at the entry of assignment statements x := a, we
also compute DA[[a]] (ps), and similarly, for control points at the entry of
conditional statements if b then S1 else S2 and while loops while b do S
we compute DB[[b]] (ps), where ps is the property state computed for the
given control point. Finally, we flag control points that cannot be reached
in any execution as “unreachable”.

We shall refer to the information extracted in this way as the base analy-
sis, consisting, for every control point, of a property state, the values of the
“possible exception raiser” and “unreachable” flags, plus the value of the
(possible) associated arithmetic or Boolean expression. We shall use pretty-
printing to display the result of the analysis in the form of an annotated
program.

3 Program Analysis and Transformation

One interesting analysis in the presence of possible exceptions and a try-
catch mechanism is a safety analysis for no-uncaught-exceptions: if all final
configurations are normal (i.e. non-exceptional) we can deduce that in all
terminating executions, all exceptions raised during program execution are
eventually caught. If the result of the analysis suggests possible uncaught
exceptions, we can inspect the abstract values of arithmetic expressions at
the assignment statements to localise the possible source.

Our base analysis also supports various program optimisations in the
style of Section 7.4 in the book. One interesting optimisation is to eliminate
unnecessary catch statements: replace try S1 catch S2 by S1 if no control
point within S1 is flagged as a possible exception raiser.

Since the base analysis collects the information at all control points,
it supports program transformation in any context, including the branches
of conditionals and the bodies of loops (cf. Exercises 7.29 and 7.30). For
example, we can replace the conditional statement if b then S1 else S2

by S1 whenever DB[[b]] (ps) = tt, where ps is the property state computed
for the entry of the statement.

3

4 Detection of Signs with Errors

In the presence of possible division-by-zero errors we have to enrich suitably
the abstract domains of the values Sign and TT of the detection-of-sign
analysis presented in the book.

noneA

neg zero pos

errA

non–pos non–zero non–neg

z

anyA

noneB

tt ff

errB

t

anyB

Figure 1: The lattices for SignExc and TTExc.

The abstract domain of integer values is modified to SignExc with or-
deringvSE, where anyA is the most abstract value and z is the most abstract
non-error value (see Figure 1).

The abstraction function absZ⊥ : Z⊥ → SignExc is now defined as
follows:

absZ⊥(z)
def
=

neg if z ∈ Z and z < 0
zero if z ∈ Z and z = 0
pos if z ∈ Z and z > 0
errA if z = ⊥

To achieve maximal precision, the abstract version of the arithmetic opera-
tion +SE is defined so as to fulfill the condition:

v1 +SE v2 =
⊔
SE

{absZ⊥(z1 + z2) | absZ⊥(z1) = v1 ∧ absZ⊥(z2) = v2}

and similarly for −SE, ?SE and /SE. For instance, pos /SE pos = non–neg
(since we use integer division) and pos /SE zero = errA.

4

With the same underlying idea we modify the abstract domain of Boolean
values TTExc with ordering vTE (see Figure 1), the abstract relations =SE

and ≤SE, and the abstract operations ¬TE and ∧TE.

Figures 2 and 3 below give an example of a base analysis.

1: b := 3;
2: p := 1;
3: while ¬(b = 0) do
4: p := p ? a;
5: b := b− 1

ss
s s

s s
s
s

s
s

s
s

Figure 2: While program that computes ab (left) and corresponding AM
configuration graph with schematic group of configurations at control point 4
(right).

{a : z, b : pos, p : pos}, p ? a : z

{a : z, b : z, p : z }, p ? a : z

.

lub: {a : z, b : z, p : z }, p ? a : z

. . .
while ¬(b = 0) do
{a : z, b : z, p : z}, p ? a : z
p := p ? a;

. . .

Figure 3: Stores and current value of right-hand-side of assignment for all
configurations at control point 4 plus resulting property state (left), and
analysis output (right).

5 Implementing the Analyser

Given a While program as input, the analyser should carry out the following
steps:

Step 1 Compile the While program into AM code.

Step 2 In the abstract domains, compute all configurations reachable from
the initial one.

Step 3 For each control point, perform the following steps:

(a) Compute the lub of all states of all non-exceptional configurations
corresponding to the control point.

5

Class Purpose

SignExc, TTExc Enumerations for SignExc and TTExc respectively.

SignExcLattice,
TTExcLattice

Implementation of lattice operations (lub and glb)
for SignExc and TTExc respectively. (Implements the
Lattice interface.)

SignExcOps Implementation of arithmetic and boolean operations
for SignExc and TTExc required for execution. (Im-
plements the Operations interface.)

Table 1: Brief description of the available classes.

(b) If the control point refers to an assignment, compute the lub of
the possible values of the arithmetic expression.

(c) If the control point refers to an if- or while-statement, compute
the lub of the possible values of the Boolean expression.

Step 4 Pretty-print the While program, along with the above results and
the values of the “Possible exception raiser!” and “Unreachable code!”
flags, in the form of control-point annotations.

Step 5 Give some indication of whether the program can terminate nor-
mally and/or exceptionally, in the form of an annotation associated
with the control point at the end of the program.

The source code of the classes available for this lab can be found in the
folder /info/DD2457/semant15/lab2. Table 1 summarizes the purpose of
each class. Here comes a detailed description of how to proceed at each step.

5.1 Step 1

To be able to translate the analysis of the AM configurations back to the
original While program, you need to keep track of which statement each
instruction corresponds to. One way of accomplishing this is to introduce
a controlPoint field in the Stm class (containing a unique value for each
statement), and a stmControlPoint field in the Inst class, containing the
value of the control point of the originating statement. The controlPoint

and stmControlPoint fields can be initialized during step 1. Figure 4 shows
an example.

6

Ê a := 21;

Ë b := 70;

Ì while !(a = b) do

Í if a <= b then

Î b := b - a

else

Ï a := a - b

Ð

Ê push-21
Ê store-a
Ë push-70
Ë store-b
Ì loop

Ì fetch-b
Ì fetch-a
Ì eq
Ì neg,

Í fetch-b
Í fetch-a

Í le
Í branch

Î fetch-a
Î fetch-b
Î sub
Î store-b,

Ï fetch-b
Ï fetch-a
Ï sub
Ï store-a

Ð

Figure 4: Control points for the While and AM version of GCD.

5.2 Step 2

To implement step 2, you need to change your abstract machine, which
originally worked with concrete Integers and Booleans, to work with the
abstract domains representing SignExc and TTExc. These domains have
been prepared for you in the enumeration types SignExc and TTExc.

You will find implementations of the related operations +SE, −SE, ?SE,
/SE, =SE, ≤SE, ∧TE, and ¬TE in the SignExcOps class. This class also
contains implementations for absZ⊥ and absT⊥ (used when translating con-
stants to abstract values) and methods to, for a given v, decide z vSE v,
tt vTE v, ff vTE v and errB vTE v (called possiblyInt, possiblyTrue,
possiblyFalse etc., used when implementing the step method for branch
and store).

As previously mentioned, the execution under abstract interpretations is
non–deterministic; 〈branch(c1, c2) :c,t :e, ps〉 for instance, has two possible
successor configurations, so if your step method looks something like this:

public Configuration step(Configuration conf)

it needs to be rewritten into something like

public Set<Configuration> step(Configuration conf).

This new step method now implicitly defines the configuration graph (step(c)
returns all neighbours of configuration c). The step method can thus be used

7

{x=Z} rhs: POS

x := 7;

{x=POS}
try

{x=POS} rhs: Z

x := (x - 7);

{x=Z} rhs: ANY A (Possible exception raiser!)

x := (7 / x);

{x=Z} rhs: Z

x := (x + 7)

catch

{x=Z} rhs: Z

x := (x - 7)

{x=Z} (normal termination)

Figure 5: Example pretty-printed output of the tool.

in a of the configuration graph, to collect all reachable configurations. Note
that there is no need to store the edges (transitions) of the configuration
graph, only the nodes (configurations).

As design choices affecting the precision versus the efficiency of the anal-
ysis, think of what traversal strategy to use (breadth-first or depth-first),
and whether to split executions from anyA into an execution from z and
another one with errA (and similarly for Boolean values).

5.3 Step 3

Step 3 requires computing lub’s. The lub of two abstract values can be
computed with the SignExcLattice.lub method or the TTExcLattice.lub
method.

5.4 Step 4

The implementation of step 4 should utilize the PrettyPrinter to pretty
print the original While program, along with the results from the analysis
as control-point annotations (i.e. above each statement). See Figure 5 for
an example output.

8

5.5 Step 5

The final configurations (those with an empty instruction sequence) should
provide you with enough information to carry out step 5.

6 Tasks

The present lab assignment consists of the following tasks:

1. Modify Table 4.1 in the book (Operational Semantics for AM) for
execution in the abstract domain. Here are two examples describing
how the modified table should look like:

〈add : c, v1 : v2 : e, ps〉 . 〈c, (v1 +SE v2) : e, ps〉

〈branch(c1, c2) : c, v : e, ps〉 .

〈c1 : c, e, ps〉 if tt vTE v
〈c2 : c, e, ps〉 if ff vTE v
〈c, e, p̂s〉 if errB vTE v

2. Create a copy of your source directory tree from lab 1 as a starting
point for the implementation.

3. Implement steps 1 through 5 described in Section 5 above.

4. On the basis of suitably chosen example programs, prepare a demon-
stration of how the output produced by your tool supports the safety
analysis and the optimisations suggested in Section 3 (as well as other
meaningful analyses and optimisations you can think of). Discuss the
limitations of the approach by presenting valid examples which the
tool cannot handle.

5. Write a report containing all your results, both theoretical and prac-
tical. These should incude all example programs, pretty-printed with
the results of the basic analysis as described above, plus the additional
analyses and optimizations performed in the previous task and your
conclusions.

7 Tips and Hints

• An elegant way of rewriting the virtual machine to work with abstract
domains is to first parameterize the domains (using generic program-
ming) and the operations (by providing an Operations-implementation
in the constructor), and then simply replace

9

new YourExecuter<Integer, Boolean>(new IntBoolOps())

with

new YourExecuter<SignExc, TTExc>(new SignExcOps()).

• During the traversal of the configuration graph it is important that
you do not return a mutated version of the configuration currently
being processed! The visited configurations need to stay intact since
1) you want to keep track of which configurations you have already
visited, and 2) the configurations are needed for the analysis after the
traversal.

The easiest way to make sure that the visited configurations stay intact
is to let your configuration objects be immutable or at least override
the clone method. A clone method should look something like this:

public Configuration clone() {

Configuration clone = new Configuration();

clone.c = (Code) c.clone();

clone.e = (Stack) e.clone();

clone.s = (State) s.clone();

return clone;

}

• To decide if a configuration has already been visited or not, you may
want to store the visited configurations in a HashSet. Keep in mind
that this requires you to override the hashCode and equals methods
in your configuration class. Here follows a sample implementation of
these two methods:

public int hashCode() {

return c.hashCode() ^ e.hashCode() ^ s.hashCode();

}

public boolean equals(Object o) {

if (!(o instanceof Configuration))

return false;

Configuration oc = (Configuration) o;

return oc.c.equals(c) &&

10

oc.e.equals(e) &&

oc.s.equals(s);

}

• Step 3 (b) can be simplified by noting that assignments are the only
statements giving rise to store instructions. To compute the lub of
the possible values of the arithmetic expression at an assignment, it
suffices to compute the lub of the top-of-stack values for each related
configuration that has store as its current instruction.

• Similarly, step 3 (c) can be simplified by noting that the if- and while-
statements always rely on the branch instruction. To compute the
lub of branching and looping conditions, it suffices to compute the
lub of the top-of-stack values for each related configuration that has
branch as its current instruction.

11

