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Hash Function

A hash function maps arbitrarily long bit strings into bit strings of
fixed length.

The output of a hash function should be “unpredictable”.
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Wish List

◮ Finding a pre-image of an output should be hard.

◮ Finding two inputs giving the same output should be hard.

◮ The output of the function should be “random”.

etc
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Standardized Hash Functions

Despite that theory says it is impossible, in practice people simply
live with fixed hash functions and use them as if they are randomly
chosen functions.
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SHA

◮ Secure Hash Algorithm (SHA-0,1, and the SHA-2 family) are
hash functions standardized by NIST to be used in, e.g.,
signature schemes and random number generation.

◮ SHA-0 was weak and withdrawn by NIST. SHA-1 was
withdrawn 2010. SHA-2 family is based on similar ideas but
seems safe so far...

◮ All are iterated hash functions, starting from a basic
compression function.
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SHA-3

◮ NIST ran an open competition for the next hash function,
named SHA-3. Several groups of famous researchers
submitted proposals.

◮ Call for SHA-3 explicitly asked for “different” hash functions.

◮ It might be a good idea to read about SHA-1 for comparison.

◮ The competition ended October 2, 2012, and the hash
function Keccak was selected as the winner.

◮ This was constructed by Guido Bertoni, Joan Daemen,
Michaël Peeters, and Gilles Van Assche,
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Ensembles of Functions (1/3)

◮ Let f : {0, 1}∗ → {0, 1}∗ be a polynomial time computable
function.
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Ensembles of Functions (1/3)

◮ Let f : {0, 1}∗ → {0, 1}∗ be a polynomial time computable
function.

◮ We can derive an ensemble {fn}n∈N, with

fn : {0, 1}n → {0, 1}∗

by setting fn(x) = f (x).
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Ensembles of Functions (1/3)

◮ Let f : {0, 1}∗ → {0, 1}∗ be a polynomial time computable
function.

◮ We can derive an ensemble {fn}n∈N, with

fn : {0, 1}n → {0, 1}∗

by setting fn(x) = f (x).

◮ Note that we may recover f from the ensemble by
f (x) = f|x |(x).
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Ensembles of Functions (1/3)

◮ Let f : {0, 1}∗ → {0, 1}∗ be a polynomial time computable
function.

◮ We can derive an ensemble {fn}n∈N, with

fn : {0, 1}n → {0, 1}∗

by setting fn(x) = f (x).

◮ Note that we may recover f from the ensemble by
f (x) = f|x |(x).

◮ When convenient we give definitions for a function, but it can
be turned into a definition for an ensemble.
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Ensembles of Functions (2/3)

◮ Consider F = {fn}n∈N, where fn is itself an ensemble
{fn,αn}αn∈{0,1}n , with

fn,αn : {0, 1}
l(n) → {0, 1}l

′(n)

for some polynomials l(n) and l ′(n).
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Ensembles of Functions (2/3)

◮ Consider F = {fn}n∈N, where fn is itself an ensemble
{fn,αn}αn∈{0,1}n , with

fn,αn : {0, 1}
l(n) → {0, 1}l

′(n)

for some polynomials l(n) and l ′(n).

◮ Here n is the security parameter and α is a “key” that is
chosen randomly.
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Ensembles of Functions (2/3)

◮ Consider F = {fn}n∈N, where fn is itself an ensemble
{fn,αn}αn∈{0,1}n , with

fn,αn : {0, 1}
l(n) → {0, 1}l

′(n)

for some polynomials l(n) and l ′(n).

◮ Here n is the security parameter and α is a “key” that is
chosen randomly.

◮ We may also view F as an ensemble {fα}, where
fα = {fn,αn}n∈N and α = {αn}n∈N.
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Ensembles of Functions (3/3)

These conventions allow us to talk about what in everyday
language is a “function” f in several convenient ways.

Now you can forget that and

assume that everything works!
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One-Wayness

Definition. A function f : {0, 1}∗ → {0, 1}∗ is said to be
one-way1 if for every polynomial time algorithm A and a random x

Pr[A(f (x)) = x ′ ∧ f (x ′) = f (x)] < ǫ(n)

for a negligible function ǫ.

Normally f is computable in polynomial time in its input size.

1“Enkelriktad” p̊a svenska inte “enväg”.
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Second Pre-Image Resistance

Definition. A function h : {0, 1}∗ → {0, 1}∗ is said to be second

pre-image resistant if for every polynomial time algorithm A and
a random x

Pr[A(x) = x ′ ∧ x ′ 6= x ∧ f (x ′) = f (x)] < ǫ(n)

for a negligible function ǫ.

Note that A is given not only the output of f , but also the input

x , but it must find a second pre-image.
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Collision Resistance

Definition. Let f = {fα}α be an ensemble of functions. The
“function” f is said to be collision resistant if for every
polynomial time algorithm A and randomly chosen α

Pr[A(α) = (x , x ′) ∧ x 6= x ′ ∧ fα(x
′) = fα(x)] < ǫ(n)

for a negligible function ǫ.
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Collision Resistance

Definition. Let f = {fα}α be an ensemble of functions. The
“function” f is said to be collision resistant if for every
polynomial time algorithm A and randomly chosen α

Pr[A(α) = (x , x ′) ∧ x 6= x ′ ∧ fα(x
′) = fα(x)] < ǫ(n)

for a negligible function ǫ.

An algorithm that gets a small “advice string” for each security
parameter can easily hardcode a collision for a fixed function f ,
which explains the random index α.
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Relations for Compressing Hash Functions

◮ If a function is not pre-image resistant, then it is not
collision-resistant.
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Relations for Compressing Hash Functions

◮ If a function is not pre-image resistant, then it is not
collision-resistant.

1. Pick random x .
2. Request second pre-image x ′ 6= x with f (x ′) = f (x).
3. Output x ′ and x .
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Relations for Compressing Hash Functions

◮ If a function is not pre-image resistant, then it is not
collision-resistant.

1. Pick random x .
2. Request second pre-image x ′ 6= x with f (x ′) = f (x).
3. Output x ′ and x .

◮ If a function is not one-way, then it is not second pre-image
resistant.
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Relations for Compressing Hash Functions

◮ If a function is not pre-image resistant, then it is not
collision-resistant.

1. Pick random x .
2. Request second pre-image x ′ 6= x with f (x ′) = f (x).
3. Output x ′ and x .

◮ If a function is not one-way, then it is not second pre-image
resistant.

1. Given random x , compute y = f (x).
2. Request pre-image x ′ of y .
3. Repeat until x ′ 6= x , and output x ′.
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Random Oracles
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Random Oracle As Hash Function

A random oracle is simply a randomly chosen function with
appropriate domain and range.

A random oracle is the perfect hash function. Every input is
mapped independently and uniformly in the range.

Let us consider how a random oracle behaves with respect to our
notions of security of hash functions.
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Pre-Image of Random Oracle

We assume with little loss that an adversary always “knows” if it
has found a pre-image, i.e., it queries the random oracle on its
output.

Theorem. Let H : X → Y be a randomly chosen function and let
x ∈ X be randomly chosen. Then for every algorithm A making q

oracle queries

Pr[AH(·)(H(x)) = x ′ ∧ H(x) = H(x ′)] ≤ 1−

(

1−
1

|Y |

)q

.
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Pre-Image of Random Oracle

We assume with little loss that an adversary always “knows” if it
has found a pre-image, i.e., it queries the random oracle on its
output.

Theorem. Let H : X → Y be a randomly chosen function and let
x ∈ X be randomly chosen. Then for every algorithm A making q

oracle queries

Pr[AH(·)(H(x)) = x ′ ∧ H(x) = H(x ′)] ≤ 1−

(

1−
1

|Y |

)q

.

Proof. Each query x ′ satisfies H(x ′) 6= H(x) independently with
probability 1− 1

|Y | .
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Second Pre-Image of Random Oracle

We assume with little loss that an adversary always “knows” if it
has found a second pre-image, i.e., it queries the random oracle on
the input and its output.

Theorem. Let H : X → Y be a randomly chosen function and let
x ∈ X be randomly chosen. Then for every such algorithm A

making q oracle queries

Pr[AH(·)(x) = x ′ ∧ x 6= x ′ ∧H(x) = H(x ′)] ≤ 1−

(

1−
1

|Y |

)q−1

.
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Second Pre-Image of Random Oracle

We assume with little loss that an adversary always “knows” if it
has found a second pre-image, i.e., it queries the random oracle on
the input and its output.

Theorem. Let H : X → Y be a randomly chosen function and let
x ∈ X be randomly chosen. Then for every such algorithm A

making q oracle queries

Pr[AH(·)(x) = x ′ ∧ x 6= x ′ ∧H(x) = H(x ′)] ≤ 1−

(

1−
1

|Y |

)q−1

.

Proof. Same as pre-image case, except we must waste one query
on the input value to get the target in Y .
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Collision Resistance of Random Oracles

We assume with little loss that an adversary always “knows” if it
has found a collision, i.e., it queries the random oracle on its
outputs.

Theorem. Let H : X → Y be a randomly chosen function. Then
for every such algorithm A making q oracle queries

Pr[AH(·) = (x , x ′) ∧ x 6= x ′ ∧ H(x) = H(x ′)] ≤ 1−

q−1
∏

i=1

(

1−
i

|Y |

)

≤
q(q − 1)

2|Y |
.
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Collision Resistance of Random Oracles

We assume with little loss that an adversary always “knows” if it
has found a collision, i.e., it queries the random oracle on its
outputs.

Theorem. Let H : X → Y be a randomly chosen function. Then
for every such algorithm A making q oracle queries

Pr[AH(·) = (x , x ′) ∧ x 6= x ′ ∧ H(x) = H(x ′)] ≤ 1−

q−1
∏

i=1

(

1−
i

|Y |

)

≤
q(q − 1)

2|Y |
.

Proof. 1− i−1
|Y | bounds the probability that the ith query does not

give a collision for any of the i − 1 previous queries, conditioned on
no previous collision.
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Iterated Hash Functions
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Merkle-Damg̊ard (1/3)

Suppose that we are given a collision resistant hash function

f : {0, 1}n+t → {0, 1}n .

How can we construct a collision resistant hash function

h : {0, 1}∗ → {0, 1}n

mapping any length inputs?
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Merkle-Damg̊ard (2/3)

Construction.

1. Let x = (x1, . . . , xk) with |xi | = t and 0 < |xk | ≤ t.

2. Let xk+1 be the total number of bits in x .

3. Pad xk with zeros until it has length t.

4. y0 = 0n, yi = f (yi−1, xi ) for i = 1, . . . , k + 1.

5. Output yk+1

Here the total number of bits is bounded by 2t − 1, but this can be
relaxed.
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Merkle-Damg̊ard (3/3)

Suppose A finds collisions in Merkle-Damg̊ard.

◮ If the number of bits differ in a collision, then we can derive a
collision from the last invocation of f .

◮ If not, then we move backwards until we get a collision. Since
both inputs have the same length, we are guaranteed to find a
collision.
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Universal Hash Functions
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Universal Hash Function

Definition. An ensemble f = {fα} of hash functions fα : X → Y

is (strongly) 2-universal if for every x , x ′ ∈ X and y , y ′ ∈ Y with
x 6= x ′ and a random α

Pr[fα(x) = y ∧ fα(x
′) = y ′] =

1

|Y |2
.
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Universal Hash Function

Definition. An ensemble f = {fα} of hash functions fα : X → Y

is (strongly) 2-universal if for every x , x ′ ∈ X and y , y ′ ∈ Y with
x 6= x ′ and a random α

Pr[fα(x) = y ∧ fα(x
′) = y ′] =

1

|Y |2
.

I.e., for any x ′ 6= x , the outputs fα(x) and fα(x
′) are uniformly and

independently distributed.

In particular x and x ′ are both mapped to the same value with
probability 1/|Y |.
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Example

Example. The function f : Zp → Zp for prime p defined by

f (z) = az + b mod p

is strongly 2-universal.

Proof. Let x , x ′, y , y ′ ∈ Zp with x 6= x ′. Then

(

x 1
x ′ 1

)(

z1
z2

)

=

(

y

y ′

)

has a unique solution. Random (a, b) satisfies this solution with
probability 1

p2
.
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Universal Hash Function

Universal hash functions are not one-way or collision resistant!
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Message Authentication Code

◮ Message Authentication Codes (MACs) are used to ensure
integrity and authenticity of messages.
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Message Authentication Code

◮ Message Authentication Codes (MACs) are used to ensure
integrity and authenticity of messages.

◮ Scenario:

1. Alice and Bob share a common key k.

2. Alice computes an authentication tag α = MACk(m) and
sends (m, α) to Bob.

3. Bob receives (m′, α′) from Alice, but before accepting m′ as
coming from Alice, Bob checks that MACk(m

′) = α′.
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Security of a MAC

Definition. A message authentication code MAC is secure if for a
random key k and every polynomial time algorithm A,

Pr[AMACk(·) = (m, α) ∧MACk(m) = α ∧ ∀i : m 6= mi ]

is negligible, where mi is the ith query to the oracle MACk(·).
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Random Oracle As MAC

◮ Suppose that H : {0, 1}∗ → {0, 1}n is a random oracle.

◮ Then we can construct a MAC as MACk(m) = H(k,m).

Could we plug in an iterated hash function in place of the random
oracle?
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HMAC

◮ Let H : {0, 1}∗ → {0, 1}n be a “cryptographic hashfunction”,
e.g., SHA-256.

◮ HMACk1,k2(x) = H
(

k2‖H(k1‖x)
)

◮ This is provably secure under the assumption that

◮ H(k1‖·) is unknown-key collision resistant, and

◮ H(k2‖·) is a secure MAC.
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CBC-MAC

Let E be a secure block-cipher, and x = (x1, . . . , xt) an input. The
MAC-key is simply the block-cipher key.

1. y0 = 000 . . . 0

2. For i = 1, . . . , t, yi = Ek(yi−1 ⊕ xi )

3. Return yt .

Is this secure?
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Universal Hashfunction As MAC

Theorem. A t-universal hashfunction fα for a randomly chosen
secret α is an unconditionally secure MAC, provided that the
number queries is smaller than t.
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