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1 Mathematics of the Maxwell equations 
References:  
1. J.D.Jackson, Classical Electrodynamics, John Wiley & Sons, 1962 (or later) 
2. A.Taflove, S.C.Hagness, Computational Electrodynamics, the FDTD Method (2nd. ed.), 
Artech House, 2000, isbn 1-58053-076-1 
3. (“The Book”) A.Bondeson, T.Rylander, P.Ingelström ,Computational Electromagnetics, Texts in 
Applied Mathematics 51, Springer, 2005, isbn 0-387-26158-3 
 
This is available as e-book for online reading by KTH students at the link 
 
http://link.springer.com.focus.lib.kth.se/book/10.1007/b136922/page/1 
 

J.C.Maxwell, 1867:   

∂B
∂t

+ ∇ × E + Jm = 0;∇ ⋅B = 0

∂D
∂t

− ∇ × H + Je = 0;∇ ⋅ D = ρ

D = eE,B = mH

 

 
Electric  Magnetic 

Field  E, V/m  H, A/m 
Flux density D, C/m2  B, Wb/m2 
Material e, Permittivity m, Permeability 
Current    Je A/m2  Jm, V/m2   
density  
For simple materials ρJe = E and ρ’Jm = H with ρ electric (Ohmic) resistivity, σ = 1/ρ with σ 
conductivity and ρ’ magnetic resistivity. 
 
• Non-relativistic 
• Non-quantized 
• Simple material behavior assumed: Cf. ferro-magnetics: hysteresis, etc. 
 
Static (electrostatics, magnetostatics) and quasi-static (induction) behavior was studied before Maxwell, 
who introduced the displacement current term dD/dt which gives rise to the electromagnetic waves. The 
Maxwell equations are the PDE formulation. The equations are hyperbolic and have wave-like solutions. 
For e, m constant and no currents or space charges we obtain by taking the curl and noting  
  div D = div B = 0,  
that for any field component u, 

u
t

u
∆=

em∂
∂ 1

2

2
 

i.e. the wave equation with wave speed 
em
1

=c  = speed of light. 

Numerical solution of the Maxwell equations as stated above is now a highly developed modeling 
technique as exemplified in e.g. [2, Ch.1].  
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When material properties are independent of field amplitudes one often studies time-harmonic solutions – 
the frequency domain analysis. For cases with piecewise constant e, m and currents only on interface 
surfaces it is possible to formulate surface integral equations for the currents. Numerical solution of 
properly chosen field integral equations requires discretization of only the surfaces, an order of magnitude 
fewer degrees of freedom than required for FDTD. 
 
When the size of the domain, measured in wavelengths, is large, numerical resolution of the wavelength 
becomes very costly. Different approximate methods for short-wavelength computations have been 
devised. In the zero wavelength limit, wave solutions may be obtained by tracing wavefront normals or 
rays), the geometrical optics approximation. But many simulations must include diffraction phenomena, 
and corrections to the geometrical optics such as the Uniform theory of diffraction have been developed, 
starting with Keller’s work in the sixties on diffraction coefficients. 
 
Numerics taxonomy 
TD = time domain, FD = Frequency domain 
FD = Finite Difference, FV = Finite Volume, FE = Finite Element, MoM = Method of Moments 
 

Time domain Frequency domain 
PDE FDTD (Yee, 1966) FEFD (many)  
 FVTD e.g. Shang 
 FETD Bondesson 
 
Integral Chew, Illinois (1998?) MoM (Harrington 1968) 
    Rao, Glisson, Wilson 
                                                   Nedelec, Monk, … 
Rays -??   Keller – only overview 
 

1.1 First order linear systems of partial differential equations with a time-like 
variable 

First order system of N PDE with t as time-like variable, n space dimensions: 

N
n

k k
k t

xt
ℜ∈=+ ∑

=
),(,0

1
xuuAu

∂
∂

∂
∂  

Wave-like solution 
.phase:amplitude,:,),(),( ),( Setxtx txiS aau =  

An iso-surface, locus of points of equal phase, S = const. is a wavefront. Constant coefficients Ak allow  
a = constant vector. Then 
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Hyperbolic, if iiγ∑A has a complete set of eigenvectors and real eigenvalues {λi} 
Non-trivial solutions: a must be an eigenvector and –λ the corresponding eigenvalue 
Normal to surface is ),,..,,( 21 λγγγ n .  
 
The front moves in its normal direction with phase-speed −λ.  
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For 0=+= ∑ ixit SdxdtSdS . Take dxi = γi δ, a small displacement in normal direction.  

Then ( ) λδδ −==∑+
dt

SdtS
ixt  and 02  

 
Note 
• λ may depend on the wave normal direction. If not, isotropic. 
• N different waves a 
 
Let us look at the Maxwell equations in this framework, a pure initial value problem for all of empty 
space R3, to simplify matters take e = m = 1 (no restriction). The matrices become (cf. the curl formula) 
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This shows why the signs of curl in the two equations differ: that makes the system symmetric, because 
curl in itself is an “anti-selfadjoint” operator. So 
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2GG has an eigenvalue 0 with eigenvector γ, and two eigenvalues 1 whose invariant 

subspace is the set of all vectors normal to γ. Thus, for the 6x6 ∑ kkγA matrix there are two static fields 
(the zero eigenvalues) and four waves moving “left and right” with velocity 1 – remember m = e = 1. 
These are transversal waves: the eigenvectors are orthogonal to γ, the wavefront normal. 
 
Example – Exercise 1 
Waves moving in the (x,y)-plane, H-field H = (0,0,H), 
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Write the matrices A1 and A2  and compute the eigenvalues and eigenvectors of cos φ A1 + sin φ A2 to 
conclude that  

i) wave speed (of light)
em
1 =c   independent of direction, isotropic 

ii) the E and H fields, for the traveling waves, are transversal, i.e. orthogonal to the direction of travel. 
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1.2 Energy estimates. 
The wave solutions above neither grow nor decay with time. That this is true for any solution can be 
easily shown, again using the symmetry of the curl equations. 
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Example: Show that the integral ***) vanishes whenever E and H vanish at infinity. Hint: Integration by 
parts. 
 
This proves that the “energy” is conserved. This is more generally true, e.g. also in the presence of 
perfectly reflecting surfaces. However, other measures of the solution may grow: A mirror can focus the 
waves so that the maximal field (the L∞ norm) becomes essentially unbounded. 

2 Basics of Difference Schemes for Wave Problems 
References:  
H-O.Kreiss, B.Gustafsson, J.Oliger: Time Dependent Problems and Difference Methods, John Wiley & 
Sons, 1996 
 
The scheme to be presented in detail is the Yee, or staggered grid Leap-frog, scheme which has a number 
of advantages. In order to better appreciate Yee, we will introduce analysis tools, which display important 
properties of schemes, and apply them to other (very simple) schemes. 
 
Consider first difference schemes for pure initial value problems in 1D plus time. 
 
Derivatives replaced by difference quotients, for example 

{ } ),(.,.),( :Grid
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Concepts: 
Convergence, consistency, well-posedness, growth of solutions, stability, 
 
A necessary property is convergence, which means that for a fixed t and x, as ∆t and ∆x -> 0 (such that 
there always is a uj

n at exactly the right spot) uj(∆x )
n (∆t) → u(x,t) . 

Consistency means that when uj
n are chosen as samples of a smooth function u(x,t), the difference scheme 

formally converges to the differential equation. The analysis is done by substituting Taylor expansions 
and cancelling terms. This operation is mechanical and difference operator calculus can be used to 
simplify the actual manipulations. 
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Well-posedness is a mathematical characterization of a problem, which requires 

• existence of a "locally unique" solution 
• that the solution be continuous as function of the problem parameters, such as initial data 

For initial value problems, well-posedness is equivalent to bounded growth: 
The homogeneous problem with initial value u(x,0) = f(x) is well-posed if and only if there exist constants 
K and α, independent of f, such that 

,)(., fKetu tα≤  
The numerical counterpart to well-posedness is stability, which roughly speaking for initial value 
problems means bounded growth of perturbations in the discrete scheme. 
Let the numerical solution at time tn be un = (…,uj-1

n, uj
n, uj+1

n, …), then the scheme applied to the 
equation is called stable if and only if there exists a b independent of n, f and ∆x, ∆t such that 
 
 ||un+1 ||/||un|| ≤ 1 + b∆t 
 
As a test problem we take hyperbolic constant coefficient linear systems,  

 0=+
xt ∂

∂
∂
∂ uAu   (2.1) 

 
Example 
The second order wave equation can be written as a first order system,
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(General theoretical analysis of Boundary conditions is outside the scope of this course.) 
The system is assumed hyperbolic and can be diagonalized by exchanging the primitive variables u for 
the characteristic variables w, related by 
 u = Vw 
where V is the matrix of (right) eigenvectors of A. The system becomes 

 Nk
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w
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For any linear scheme, the operations of discretization and diagonalization commute, so it is clear that we 
can restrict our study to the single equation 

ut + aux = 0 
to which we apply the simplest, first order accurate in time and space scheme: 
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where σ = a∆t/∆x is called the Courant (sometimes the Courant-Friedrichs-Lewy) number which tells 
how many cells the wave travels in a timestep. 

2.1 Fourier (or Von Neumann) analysis 
The difference formulas, just as the differential equations, allow exponentials as solutions and we look for 
a solution with wave number k ( = 2π/λ, λ = wavelength): 

 jikxnn
j eGu =  

G is called the growth factor; if |G| > 1 the wave grows and |G| < 1 means a damped wave. 
If G is real, the phase depends on x only: a standing wave, no propagation. 
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Note: One need not diagonalize the system for the stability analysis. For a system of s equations, G 
becomes an s x s matrix. 
By substituting the ansatz, we obtain 
 ( )θθσσσ sincos11)1( ieG xik −−+=−+= ∆  
where θ = k∆x = phase shift per cell. The relevant range for θ is –π to π; a wave with shorter wavelength 
is indistinguishable on the grid from one with wavelength in this range. Think of the Shannon sampling 
theorem. 
The growth factor for the exact solution is  
 H = exp(-iak∆t) = exp(-iσθ). Its phase speed is of course  
 a = -(arg H)/(k∆t). Similarly, the phase speed of the numerical solution is 

an = -(arg G)/(k∆t) 
The further analysis requires an assumption of how ∆t and ∆x tend to 0; the usual assumption is that σ is 
kept constant. We have  
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So, arg H = arg G to first order in θ, i.e. ∆x and ∆t, and  
 an = a + O(∆t) as ∆t -> 0, for a fixed Courant number. 
For finite step-sizes, the phase speed depends on the wavelength. This is called dispersion.  
It is clear that |H| = 1 cf. the L2 norm analysis for the Maxwell 
equations, the energy is conserved. But |G| depends on σ and θ. 
|G| < 1 is dissipation (damping), |G| > 1 is growth.  
 
Here is a plot of the locus of G(θ,σ)  in the complex plane for 
σ =-1.2,-1,-0.8,-0.4,(solid) 0.4,0.8,1, and 1.2 (dashed),  
-π ≤ θ ≤ π. The unit circle is marked by +. For σ = -1, the 
scheme has |G| = 1, for  –1 < σ < 0 it is damped, |G| < 1:  
σ = 0 is uninteresting and for other σ it is unstable. 
 
Turning the space difference the other way we get 
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which is damped for 0 < σ < 1 and unstable for other σ. It appears that the difference scheme should be 
chosen to reflect the direction of the characteristics: upwind or upstream differencing is useful. Why this 
is so can be illustrated by the  

2.2 Courant-Friedrichs-Lewy sufficient condition for non-convergence. 
Concepts: domain of dependence, domain of influence. 
Consider again an initial value problem for a system of PDE in time and one space dimension, initial 
values u(x,0) = f(x). The domain of dependence is the sub-set D(x,t) of the x-axis such that f(x) for x 
outside D has no influence on u(x,t). For hyperbolic systems, a plot of the characteristics through (x*,t*) 
immediately reveals D: it is the section cut off by the extreme characteristics 

x-x* = max(λj)(t-t*) and x-x* = min(λj)(t-t*). 
That D is bounded is referred to as finite speed propagation of information. For the heat equation, D is all 
of space (-∞,∞) and information travels infinitely fast, although distant points influence the solution less 
than near-by points. The domain of influence is the reverse: The set I(x*,t) for which f(x*) influences 
u(x,t). See the figure. For the numerical scheme the definition is analogous.  
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Domain of dependence D and Influence I for second-order wave equation  
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∂ . The slopes are dt/dx = ± 1/c. 

 
It is now clear that for convergence to be possible, the numerical domain of dependence N must include 
the mathematical domain of dependence D: This is the CFL condition which is necessary for 
convergence. If it does not hold, we can change the exact solution at will by manipulating f(x) for x 
outside N but in D, i.e., without changing the numerical solution. 
The Lax Equivalence Principle shows that what happens is numerical instability: 
The principle says - again, roughly, but with the proper preparations this is a theorem -  
 
 convergence = stability & consistency 
 
So for a consistent scheme (which all of the 
schemes considered here are, and it is easy to 
check) it is only stability that can go wrong. 
Hence, violation of the CFL-condition implies 
instability. The CFL condition is easy to picture 
by overlaying the computational grid on the 
domain of dependence. For the first single sided 
scheme above the picture is: 
a shows a case with a(σ) > 0, unstable because 
the difference scheme looks the wrong way, b is a 
(possibly) stable case, and c again is unstable 
because the timestep is too large. The plots of G 
confirm that b is actually stable. The final stability 
condition for the single-sided scheme is 
 -1 < σ < 0 
and with the difference turned the other way, 
 0 < σ < 1 
The following scheme (Lax-Friedrichs) is symmetric and avoids the necessity to switch directions: 
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As is easily seen, the CFL condition is |σ| < 1 and this is also a sufficient condition as may be shown by 
the Fourier analysis. It is left as homework to experiment with the scheme and look at its dissipation and 
dispersive properties.  
Note: This scheme is never used for the Maxwell or simple wave equations because of its excessive 
damping. It can be used as a starting point for more accurate schemes for nonlinear problems, such as in 
gas dynamics, where dissipation is absolutely necessary to control shock formation etc. 
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2.3 Finite differences for wave equations  
(Book pp 27-33) 
The approximation properties of difference approximation to derivatives are characterized by 
the order of accuracy p, and the error coefficient C; Let the grid be{xi}, xi – xi = h (equidistant, meshsize 
h) and approximate the derivative f’(xi) for a smooth function f by some difference formula  
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The error is then  

  ( ) ( ) ( )11 )()()( ++ +=−′= p
i

pp
ii hoxfChxLfxfe  

 
Examples 

 ( ) Forward                    )(
2
11)( 2

1 hofhff
h

xf

ifD

iii +′′=−−′

+

+
))())

 

 

( )

( ) Central          )(
6
1

2
1)(

Backward                  )(
2
11)(

4)3(2
11

2
1

0

hofhff
h

xf

hofhff
h

xf

i

i

fD

iii

fD

iii

+=−−′

+′′−=−−′

−+

−

−

)) ()) 

))())

 

 

      

grid staggeredon  Central 
)(

24
1)(1)(

 )(
24
1)(1)(

4)3(2
12/1

4)3(2
2/12/1









+=−−′

+=−−′

++

−+

hofhff
h

xf

hofhff
h

xf

iii

iii

 

The two “different” staggered grid formulas differ only by numbering of points; if values of f are 
available on the grid, we obtain values for the derivative at xi+1/2 (midway between neighbor points) with 
step h, and at points xi with step 2h (the D0 formula). 
 
But there is more than approximation to solving differential equations. We replace them by difference 
equations to obtain approximations ui to the solution (say u(x)) at the gridpoints, so the error is 
 iii uxue −= )(  
 
Example 
Central differences for second order “Helmholtz” equation 
In contrast to the schemes discussed above, this is an extremely successful scheme. For a time-harmonic 
solution )(),( xuetxv tiω=  to the wave equation xxtt vcv 2= , with wave number k = ω/c it gives (think of  
periodic boundary conditions, or a Cauchy-problem) 
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The exact solution is kxDkxCBeAe ikxikx sincos +=+ − . Subject to the (stability) stepsize requirement 
|kh| ≤ 2, the numerical solutions are of the exactly the same form but with slightly modified wave 
numbers,  
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Violation of the stepsize limit gives catastrophic growth of error in attempts to propagate the wave. 

3 FDTD 
Book Ch 5: FDTD 
FD = finite difference, TD = time domain 
“FDTD” is now used to mean specifically the scheme popularized by Kane S. Yee in 1966, with a grid 
staggered in time and space. This allows centered differences for all variables, in time and space. We look 
first at the staggered grid scheme for 1D Maxwell w/o dissipation (lossless material) 
 xtxt EHHE == me ,  
Grid: Vertical time, horizontal x. Usually time index set as superscript, space index as subscript. 
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This first order system of difference equations is equivalent to 
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where u can be E or H, just like either of E(x,t) and H(x,t) satisfy the wave equation 

 
em
1, 22 == cucu xxtt   

σ is called the Courant number, the ratio between the distance traveled by the wave in a timestep and the 
cell size.   
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3.1 Dispersion: Phase speed depends on wavelength 

The discretized equation has wave-solutions jikx
n

n
j eUu = - because exponential functions are 

eigenfunctions of constant coefficient difference as well as differential operators. Substitute the ansatz in 
the difference equation, 
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This difference equation has solutions of type Un = ξn where ξ satisfies the characteristic equation 

                   0)
2

sin42( 122 =+−− −ξθσξ        

The general solution is Un = aξ1
n +bξ2

n where ξi are the roots of the characteristic equation.  For this 
wave NOT to grow, the moduli of ξ1 and ξ2 must be <= 1. But the product of roots is 1, so in that case 
both roots have modulus 1, ξ1 = exp(iα), ξ2 = exp(-iα) and        

 
2

sin21cos 22 θσα −=      

or 

 
2

sin
2

sin θσα
±=  

which is possible (with real α) if 1
2

sin22 ≤
θσ for all wave numbers θ, i.e., σ <= 1. 

Now, this means that the wave phase changes by α per timestep ∆t

               )()(
jj kxtikx

t
tin

j eeu ++
∆ == ω
α

 
so the phase speed of the wave is  
 cnum = ω/k = α/(k∆t) =αc/(σθ)  
or 
 cnum/c = α /(σθ) 
We see that the wave speed depends on  
 spatial resolution: 2π/θ is the number of cells per wavelength. 
 temporal resolution: σ is the number of cells traveled in a timestep 
and this dispersion is the most important error in the solution. The waves are NOT dissipative because the 
amplitude is constant: |ξ| = 1 when the time-step is 
limited to σ <= 1. 
The plot shows cnum/c as function of σ and θ. 

• The error vanishes as θ -> 0: the scheme 
converges for any stable σ. 

• It is correct independent of θ if σ = 1: The 
magic time-step. 

• The error seems never worse than 40% and the 
wave always is too slow; 

• Short waves (larger θ) run more slowly that 
longer. 

 
The error in phase speed could be fixed for 
monochromatic waves by modifying the material data 
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so the numerical speed matches the desired, but the Magic time-step is not possible anyway in 2 & 3D for 
stability reasons. 

3.1.1 Anisotropy and stability 
In 2D and 3D the numerical wave speed varies also with the direction of the wave. Consider the 2D case; 
the Yee scheme is equivalent to the central difference discretization of the wave equation, and assuming 
the wave travels with a wavefront normal (cos φ, sin φ) we obtain after a manipulation much like the 1D 
above that the phase shift per time step α satisfies 
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2
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2
cossin

2
sin 2222 φθφθσα  

and for 3D 

 





 ++=

2
cossin

2
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2
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2
sin 32221222 φθφθφθσα  

where the cosφk are the direction cosines of the wavefront normal. There must be a real α for all 
wavenumbers θ, and all wave directions, so the max. over φ and θ of the RHS must not exceed 1. Thus, 
the time step is limited to  

 
Dx

tc 1
≤

∆
∆  

in D space dimensions, assuming equal mesh increments in 
all dimensions. The waves travel fastest along the main 
diagonals, and most slowly along the grid lines. 
 
The colored die is a representation of the anisotropy in a 3D 
FDTD model. The wave speeds depend on the wave 
direction. A point on the die represents the corresponding 
propagation direction, its distance to the origin (and its color) 
shows the wave speed cnum/c, with 12 cells per wavelength 
and a CFL-number of 0.99/sqrt(3). The shape is exaggerated: 
0.9923 < cnum/c < 0.9999, so a difference of less than one %. 

3.2 Complexity and error 
Armed with a formula for the dispersion error we can estimate the work for solving a diffraction problem 
over a domain of size L (L2 in 2D, L3 in 3D).  
Suppose a phase error of E (compared to the exact solution) is acceptable. The waves travel L and have 
wavelength λ and accumulate phase error 

 EL
c

cnum <−
λ

)1(  

For small θ, we obtain  

 )(
6

1 4
2

θθ
σθ
α O+−=  

so it is necessary that 

 2
3

22

6
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6
xLLE ∆=>

λ
πθ

λ
 

The number of time-steps to travel L is n = L/(σ ∆x) and in D space dimensions there are (L/∆x)D cells so 
the total work is 
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where WD is the work to for one time step on one cell. In 3D, for example, the work grows as the sixth 
power of the electrical size L/λ and as the inverse square of the phase error accepted. The table below 
shows the phase error in o for a range of L/λ and 2k cells per wavelength, k = 1…7, errors of more than 
360o replaced by 360o. A common recommendation is O(12) cells per wavelength, but as we see, 
electrically large cases require much more than that. 
 
Table1:  Phase error, degrees; N = #cells per wavelength, Size = L/wavelength 
N           2        4        8       16       32       64     128     256  
Size  
     1    74.85     8.68     1.85     0.44     0.11     0.03    0.01    0.00    
    10   360.00    86.79    18.47     4.45     1.10     0.27    0.07    0.02    
   100   360.00   360.00   184.72    44.49    11.02     2.75    0.69    0.17    
  1000   360.00   360.00   360.00   360.00   110.21    27.49    6.87    1.72    
 10000   360.00   360.00   360.00   360.00   360.00   274.90   68.69   17.17 
 
Table 2, 10log(W) 
  
N          2        4        8       16       32       64     128     256    
Size  
     1    0.90      1.81     2.71     3.61     4.52     5.42    6.32    7.22    
    10    3.90      4.81     5.71     6.61     7.52     8.42    9.32   10.22    
   100    6.90      7.81     8.71     9.61    10.52    11.42   12.32   13.22    
  1000    9.90     10.81    11.71    12.61    13.52    14.42   15.32   16.22    
 10000   12.90     13.81    14.71    15.61    16.52    17.42   18.32   19.22 

 
Suppose 10o phase error is acceptable: 
 
Size     1    10  100  1000 
N        4    12   32   100 
#cells  64  1.7M  33G    1P 
10logW   2     6   10    15 
(M,G,T,P = Mega,Giga,Tera,Peta = 10 6,9,12,15) 
 
Clearly, for this accuracy requirement,  
L/λ  = 103 is out of reach at present, but L/λ 
a few 100’s is possible on a large computer. 
L/λ = 10 is easy on your PC. 
 
The wing-span of a B2 Spirit is 52m and 
search radars have λ O(0.1m). The craft was 
designed in the eighties, on machines (like 
the Cray XMP/48) capable of 100 Mflops 
with 64 M words memory. 
Obviously, other techniques than second 
order FDTD were used! We shall see later 
how the integral equation methods would 
fare. The rectilinear planform is typical of early stealth designs, like the F117 NightHawk, which was 
made of all flat surfaces. 
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3.3 Improvements? 
Higher order difference formulas are effective for wave propagation, on a regular grid. But the Yee 
scheme staircase approximations to oblique boundaries would destroy the potential higher accuracy. Also, 
construction of higher order accurate and stable boundary conditions is not easy. 
The most successful attempts are the “summation by parts” operators developed at TDB, Uppsala 
(Gustafsson, Strand, Nordström & al), and the Embedded Boundary schemes (Leveque, Kreiss, 
Petersson). Most codes still rely on the second order formulas, and use various types of mesh refinement 
and/or triangular/tetrahedral meshes close to boundaries to mitigate the staircase effects. 

4 Absorbing boundary conditions: ABC 
For simulations, the Yee grid must be terminated by boundary conditions. If we let E-points be the 
extreme gridpoints, the obvious choice is to set E to zero there: a PEC boundary. For TE waves one may 
choose a grid with H-points at the edges and terminate by a PMC (perfect magnetic conductor). But PEC 
boundaries are perfect reflectors, and their reflections will disturb the signals in the object under study. 
The design of efficient non-reflective conditions has proceeded along two lines: Analytic ABC, e.g. the 
“Mur” conditions implemented in Lab 1, were developed first, favored by numerical analysts for the 
intricate stability analysis required, and use the hyperbolic properties (characteristics, etc,) of the Maxwell 
equations. Engineers have often used instead a damping layer with lossy material next to the exterior PEC 
boundary to absorb the waves so that very little reaches it. The walls of anechoic chambers are covered 
with porous spikes to provide the damping, 
With the Perfectly Matched Layer invented by P.Berenger around 1990 the battle between the two types 
was over: PML is more robust and achieves higher damping over a larger set of incidence angles. The 
design of stealth aircraft was one of the drivers for better ABC. When the radar cross section is the size of 
a crow, spurious reflections from exterior boundaries must be annihilated lest they swamp the signals 
from the object. 

4.1 Analytical ABC 
We show the simplest case here, for the scalar wave equation xxtt ucu 2= . Suppose we wish to let waves 
out to the right at x = L. The general solution (d’Alembert) of the wave equation is described as the sum 
of a right-running wave f and a left-running wave g. 
 )()( ctxgctxfu ++−=  
Clearly, the left-running wave is also a solution of the one-way wave equation 
 0=+ xt cuu (and the right-running: 0=− xt cuu ) 
and this can be used as a numerical absorbing condition. 
For waves along the x-axis it is perfect for the continuous model. After discretization it is less perfect 
(dispersion, again) but simple and accurate enough for many applications. The Mur condition is simply a 
discretization in the Yee spirit of the one-way equation. Two formulations are suggested in the Lab1 
handout. 
The lecture notes go on to calculate the reflection coefficient of the one-way condition in a 2D setting, 
and then give a short presentation of improved versions, the Engquist-Majda family, which is much better 
for a larger range of incidence angles. 
 
The Berenger PML splits the fields (every component) into normal to the absorbing wall and tangential to 
it, and adds damping only to the normal component. Efficient and big step forward, in theory, but 
painstaking coding: there are twelve Maxwell components, and different models on walls in x, y, and z, 
and wedges ad corners of the rectangular grid brick have to be treated specially. 
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4.1.1 Reflection & Engquist-Majda non-reflecting conditions 
We have derived a non-reflecting condition by considering 1-D waves and the characteristics. The 
condition admits only waves traveling with outward velocity c (phase speed of light). What happens if we 
apply it on a multi-dimensional wave problem on a half-space x < 0?  
Say 2D (x,y). 
For x < 0, the wave equation 0 :0   space-halfright  on the ),(2 =+>+= xtyyxxtt cuuxuucu  

Time-harmonic variation ),( yxUeu tiω= , and k = ω/c = 2π/λ . Let the incoming wave be 
( ) ( )
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Indeed, b = 0 and k = a, for the characteristic condition, but we will keep the generality for the moment. 
This defines the reflection coefficient R and the transmission coefficient T. At x = 0 the waves on the two 
half-planes must match,  
 Uinc + Usc = Utr, and d/dx(Uinc + Usc) = d/dx(Utr): 
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and the reflection coefficient becomes 
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It follows, that ky = ky and kx = –kx because the scattered wave must move away from the interface. Thus, 
with the characteristic condition, a = k and 
 R = (cosθ – 1)/(1 + cosθ) = –tan2(θ/2) 
where θ is the angle between interface normal and wavefront normal. 
Example: A source in the center of a square sees a maximal θ of 45o to the corners where R becomes 

 

3− 8 = .17  
 
The Mur first order condition, discretized as shown, gives a small reflection even for orthogonal waves 
because the numerical wave speed differs slightly (parts of %) from c. As we just saw, non-orthogonal 
waves give much larger reflection, so it makes sense to look for continuous models with smaller 
reflection. This is the subject of the Engquist–Majda family of conditions. The technique is to derive 
approximations in wave-number space which are transformed back into physical space by 
  iω = d/dt, –ikx = d/dx, etc. 
 
The dispersion relation is kx

2 + ky
2 = k2: 
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Note that the transmitted wave is ( ) 222  where bakTeU byaxi

tr +== +  where a is the x-wave number of 
the transmitted wave, i.e. 
 for first order, a = k, R = O(θ2) (see above), and  
 for second order a = (k –1/2ky

2/k) = k(1–1/2sin2θ), R = O(θ4)  
The second order condition is easily implemented on the staggered Yee grid (see copy from Taflove-
Hagness) 
 
The dispersion relation may also be used to derive the “paraxial” approximation, which allows a marching 
type numerical solution at the price of neglecting the back-scatter. It is useful for waveguides (“Beam 
propagation method”), sound transmission in stratified media, etc. 
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The approximations can be illustrated in the (kx,ky)-plane: 
The circle is the wave equation dispersion relation, and the 
parabola is the paraxial approximation. 
 
The “wide-angle” paraxial approximation comes from a 
Padé-approximation to the square root: 
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4.2 UPML 
The Uniaxial PML (UPML) is much easier to implement and employs no field splitting. It does, as we 
shall see, introduce new differential equations, but of the benign type we saw for the modeling of 
dispersive materials. 
The initial idea is this: Look at the lossy Faraday’s law. It could be derived from a non-lossy material by a 
“stretching” of the space variables, dx1 = sx dx, by a complex scale factor sx. This, again, is equivalent to a 
modification of the isotropic material into an orthotropic one, so we wind up with diagonal permittivity 
and permeability tensors, 
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We will now show that a material interface, assumed normal to the x-axis, between a homogeneous 
material with ei = mi = 1 and the damping layer can be made exactly free of reflections for any incidence 
angles, any frequencies, etc., by proper choice of ei and mi. This is surely surprising, and also the very 
simple final result on how to choose the ei and mi. 
Let the interface be x = 0, x < 0 is the non-lossy isotropic part and x > 0 is the anisotropic layer. We 
consider TM waves, so the incoming wave is ))(exp( 21 ykxkjEz +=  with Rek1 < 0 
and this is the total field in x < 0 since there is to be NO REFLECTED wave. In x > 0, let the wave be

))(exp( 21 yxjTEz kk +=  with Re k1 < 0 so the wave moves away from the interface. Note that ki can 
be complex but ki are real. The interface conditions are that the tangential components Ez and Hy be 
continuous. 
The Maxwell equations are 
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From this follows the dispersion relation, 

 
1

2

2

2
2

3 m
k

m
k

ωeme yx +=  

and the continuity requirements, including phase matching for every y across x = 0, 
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Replacing the k in the dispersion relation by the expressions on k we obtain 
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If we choose  
 e3 = m2 = 1/m1  
(*) is satisfied for all k with 222

yx kk +=emω  which is true for all incidence angles and all frequencies ω ! 

 

 

4.2.1 Choice of σ and the 1D (transmission line) case 
 Now we proceed to choose s to produce damping. Look at a 1D case with resistive damping, 

 yxzyxzz HE
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In 3D the two materials are perfectly matched across the interface if 

 3,2,1,2
321 === i

s
sss

i
ii me  

For an x-interface choose s2 = s3 = 1, y-interface: s1 = s3 = 1 and a z-interface s1= s2 = 1 
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so s1 = ),1(/1/1 23 ωe
σ
j

ss +== and the Maxwell equations become 
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We recognize the condition as impedance matching: the wave impedance Z = H/E satisfies 

 
m
e

m
e

e
mσωm

σωe
σωm
σωe

±==
+

+
=⋅

+

+
= Z

j

jZ
Zj

jZ ,;1 2
*  

which is real and the same as in the non-lossy domain (+-: left- and right-running waves). The Lab 1 final 
exercise produces the UPML boundary condition in this way. 
In 1D there is no need for a whole damping layer: A transmission line can be terminated with no 
reflections by an impedance matched resistor. All we need is  
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which (of course …) is the Mur or Characteristic ABC re-discovered, - for left-running waves and + for 
right-running. But in 2D and 3D a whole layer is needed because oblique waves have different normal 
phase speeds, so a single resistor cannot do the job. 

4.2.2 Implementation in the Yee-scheme  
Can use the ADE approach, see Dispersive Materials, above 
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where D and Ez, K and Hx, and M and Hy share grid-points, and (E,D) are at integer multiples of ∆t and 
(K,Hx,M,Hy) are at odd half-integer multiples. There result three 2x2 linear systems for (D,E), (K,Hx) and 
(M,Hy) at the next time level. 

4.2.3 Amount of damping; choice of σ. 
From the construction, the wave number kx is complex, 
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for in-coming waves making angle φ with the positive x-axis. Since the UPML is terminated by a 
reflective PEC condition, the reflected wave is also damped, and the net reflection coefficient is 
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 φσ cos2ln
Z
LR −=  

so R can be made as small as we please by choice of σL.  
Notes 

• Glancing waves (φ = π/2) are not damped. 
• The damping is independent of wave-length 
• Large σ needs special time-stepping for stability reasons (see below) 
 

Because of dispersion, the layer is not completely reflection-free for the Yee discretization. The standard 
recipe is to increase the damping gradually, like 
 p

m nmAx )()( −=σ  
for a layer starting at cell number m. The exponent p is often chosen 2 < p < 4. The reflection coefficient 
over nUPML cells is then 
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5 Sources 
Two kinds, point sources in the computational domain such as current pulses on wires, and waves 
(cylindrical, plane,…) created by external sources. 

5.1 Point sources 
A point source may be implemented as a prescribed variation of say the E-field in a point. This correctly 
describes the wave moving away from the source, but also creates reflections from scattered waves hitting 
the source. In a 1D-case, such a source is a total reflector. In cases where the scattered waves arrive later 
than the duration of the pulse, one can simply exchange the source for the standard update after the pulse 
time. 
In 2 and 3D, the reflections in the source are much weaker – only in a single gridpoint and we neglect 
them. 

5.2 External wave sources 
An externally generated wave can be implemented as initial condition, but this is a problem with 
persistent sources such as a harmonic wave turned on at t = 0. One usually employs “Huygen’s surfaces” 
which decompose the domain into a portion outside the scatterer where only the scattered waves Usc are 
represented on the grid, and a near-field domain where the total field, Utot = Uinc + Usc sum of incoming 

and scattered waves is represented. We illustrate the technique on a 1D-case 
xt
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inc  and the Yee-scheme. Let the exterior domain be x > xN+1/4 (note: the 

surface is between xN and xN+1/2) so that variables with subscripts >= N+1/2 mean scattered field and 
with subscripts <= N mean total field. 
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is used for k <= N-1/2 and k >= N+1 
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Modeling: Absorbing boundary conditions; dispersive material; fixes for staircasing 
Book Ch. 5.3 pp 79- 81 
 

6 Fixes for staircasing 
The square Yee cells cannot represent curved material interfaces well – the “staircasing” or “LEGO” 
effect. Proper resolution of boundaries can be achieved by e.g. unstructured grids and finite elements. 
Usually one combines the Yee staggered grid in “free space” with finite elements near boundaries into a 
“hybrid” scheme. A.Bondeson (one of the authors of the book) showed how the combination can be done 
to make a stable method. 
Here we will briefly introduce improvements in the FDTD spirit for non-grid aligned boundaries a) at 
PEC and b) at dielectric interfaces. 

6.1 Non-aligned PEC boundaries 
The Yee scheme can be derived from Faraday’s law by line 
integrals and the Stokes’ theorem. Suppose a PEC boundary cuts the 
cells as shown right. The line integral around the skewed 
quadrilateral with area A gets no contribution from the PEC part: the 
tangential component is zero there, and we obtain 
(TM case) 
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 etc. where f and g are the lengths of grid-lines cut by the boundary. Note that there are several cases for 
how the boundary cuts the cell, and rules-of-thumb are needed to choose e.g. which cells to keep. There 
are also stability issues. Still such modifications do improve the accuracy. 

6.2 Non-aligned Dielectric boundaries 
Dey and Mittra devised a simple scheme of area (volume- in 3D) –
weighting:  
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7 Dispersive material 
Most real materials have properties that depend on the frequency ω of the illumination. They can often be 
well modeled in the frequency domain by e(ω), etc. and in the time domain by a convolution, (the hat 
denotes the phasor, or Fourier coefficient) 
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If the transform of the impulse response function χ can be well approximated by a rational function, the 
convolution can be computed by an “ADE” – an augmented set of differential equations. As an example, 
take a “single pole Debye” material, 
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in the time domain. The frequency domain (E,D)-relation is 
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and in time domain 
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There remains to see how this plays out in the Yee-scheme for the Maxwell equations  
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so the time-domain equation including the J-current is 
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In the Yee-discretization we let J share gridpoints with E: 
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which is a 2x2 linear system to solve, always non-singular. Exercise: Show! 

7.1 Exponential time-stepping 
With large σ, the standard central difference time-stepping produces slowly damped oscillations: 
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Of course, c∆t/∆x <1 for stability, but if β > 1, α < 0 and there may be wiggles of the (-1)n kind. This is 
NOT instability, because the solution still decays, but it is very inaccurate. The problem is that the time-
scale of the damping is faster than the transport time scale.  
If β < 1 is restrictive, one may employ “exponentially fitted” time-stepping as follows.  

Set 
t

FeE e
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−
= and apply the Yee scheme to the equation for F: 
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which is much better for large σ/e. The standard Yee-formulas can be recovered as rational 
approximations of degree (1,1) to the exponential functions, 
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8 Geometry and grid methods 
We have seen the Yee-scheme, and how to treat sources and boundary conditions. In all, the Yee scheme 
is extremely successful. Its drawback is the necessity for a rectangular equi-sized grid: Non-rectangular 
geometry has to be approximated by LEGO-style bricks, sometimes also referred to as staircase effect. 
Finite Volume and Finite Element methods for dealing with curvilinear geometry have been used for e.g. 
computational fluid dynamics since the sixties. Common grid types are shown here: 
  

 Cartesian (Yee)               Mapped Cartesian    Unstructured triangular 
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It is natural to investigate how such schemes can be used for the Maxwell equations as well: Existing pre- 
and post-processing software, and some of the solvers developed for CFD, could be re-used. This lecture 
gives an overview of how the various issues have been addressed.  
 
Difficulties in standard approaches applied to the Maxwell equations 
• There are waves running both right and left and symmetric schemes are natural. However standard 
central difference schemes are prone to odd/even decoupling, i.e., oscillatory numerical solutions that 
oscillate with the shortest wavelength representable on the grid. These waves are sometimes referred to as 
"spurious modes" and can also be associated with the dispersion, wavelength 2∆x perturbations travel at 
speed 0. 
In steady CFD the remedy is to add a controlled amount of numerical dissipation, by artificial viscosity or 
diffusion, or even fourth order difference terms. 
 
• An alternative is the use of (unsymmetric) upstream differences. This requires essentially that the 
system be diagonalized, which is easy when the coefficients are piecewise constant. But first order 
schemes are much too dissipative, and better than first order accuracy requires complicated schemes. Note 
that it is much easier to devise good schemes for the second order wave equation formulation because of 
the compactness of the second difference formula. But often both H and E are necessary, e.g. for 
modeling dispersive and non-linear media, and in such cases the wave equation formulation thus is 
slightly more cumbersome. 
 
For spatially multidimensional cases there is also another source of spurious solutions: 
• Artificial growth of non-solenoidal components of B and D, i.e., violation of (proper discrete variants 
of) the Gauss laws. This does not happen in the Yee scheme but may in second order wave equation 
formulations, or in approximations to curl curl unless the scheme is properly designed – see Andre’s 
lecture Oct 9. This is related to "long time instability", which is often a linear growth of the error: 
 

9 Integral equation methods in the frequency domain 
Book p 154 – 198 

9.1 Introduction - electrostatics 
Let us start by discussing a “Newtonian” view of electromagnetics – focusing on the charges, the sources 
of the fields, and then compare it with the “Laplacian” PDE view. The Coulomb force between two 
charges Qi and Qj at x1 and x2 is 
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4π is the solid angle and e is the dielectric constant of 
the medium. With n charges, the force on Qi is 
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The “electrostatic problem” calls for determination of the electric field created by a number of conductors 
Si, with given potentials Vi . Only the surfaces carry charges, which will rearrange themselves on the 
surfaces, driven by the forces. One might try solving the many-body initial value problem 

 niQ
dt

dD
dt

dm ti
ii

i ,...,2,1,2

2
==+⋅ Exx  

where Et is the tangential component of the E-field acting on point i, computed from the positions of all 
the charges. The damping D is necessary; without it, the system would oscillate for ever. Equilibrium 
obtains when the net force (proportional to E) is orthogonal to the conducting surface. Since E is the 
gradient of V, the tangential component of the gradient of V vanishes so V becomes constant on the 
surface. 
The total charge on each body is determined by the initial data. The potential is computable by integration 
along the E-field lines from “infinity”, but there is no easy way to determine what the charge on each 
body should be to produce a desired potential. 
 
In the Laplacian description, one solves the partial differential equation satisfied by V: 
 0)( =∆ xV  
except at x = xi. Surrounding xi by a sphere Sδ of radius δ, the formula for the field from a point charge 
gives 
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By superposition, we can write 
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where δ is the Dirac delta-function. For a continuous charge distribution ρ(x) this becomes 
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whereas the “Newtonian” description is 
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(the subscript on the differential operator shows differentiation w.r.t x, not x’) is called the Green’s 
function for the free space Laplace operator with boundary condition G = 0 at infinity. Note that: 

• the differential equation has constant coefficients, so G depends only on the difference x – x’; 
• the isotropy of the differential operator (actually, rotational invariance) makes G a function only 

of the distance |x – x’| 
For the electrostatic problem with given conductor potentials, the charge is a surface charge σ and we 
have 
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a “first kind Fredholm” integral equation for the unknown σ. We know from potential theory that the 
Laplace/Poisson problem has a unique solution. Since we can calculate σ from the normal component of 
the E-field, 
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we expect the integral equation to have a unique solution too. But First Kind equations are known for 
their ill-conditioning. Consider solving  
 ∫=

I
dyyxKyuxf ),()()(  

for u. If the kernel function K is smooth, the integral operator smooths short wavelength variations in u. 
The converse is that rapid variation in f, such as e.g. measurement noise, is magnified in u. If the 
magnification is NOT uniformly bounded, such a problem is called ill-posed and requires filtering, 
regularization. However, the point charge kernel function has an integrable 1/r-type singularity for x 

close to x’– not so smoothing, yet nice enough. In 2D, the Green’s function is )'ln(
2
1 xx −−
π

 and the 

story is similar. 
 
Notes 
The O(h) error observed is not obvious: The exact solution has an r-1/2 type singularity at external right 
angled corners. Thus, the numerical solution cannot converge uniformly pointwise (but it can in l2 – 
norm). When convergence is regular, one can improve the results by Richardson extrapolation: 
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Capacitor example from Book: The extrapolated value from 10 and 20 elements is 18.71 which has only 
0.1% error and is much better than the result with 200 elements. 
 

9.2 Scattering of TMz waves from perfectly conducting objects. 
The development above indicates that any electrostatic field between conductors can be produced by 
some charge distribution on their surfaces. So maybe any solution to the Laplace equation in a closed 
domain D with exterior normal n can, too? The answer is yes, but one needs both a single-layer charge σ 
and a layer of dipoles, say γ. The argument runs as follows: Consider a modified domain D’, equal to D 
excluding a small sphere Sδ around a point x and a tube connecting Sδ to the boundary of D. The surface 
of D’ is S’. Let u be a solution to the Laplace equation in D, and v(x’) = G(x,x’). 
Then 
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as δ -> 0. Finally, we obtain the representation  
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The same representation is valid for solutions to the Helmholtz equation, for which the Green’s function 
in 3D is 
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(see notes for the 2D formula). 
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The formula 
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defines a solution to the Helmholtz equation both inside and outside S. Let the exterior to S be e and the 
interior i. Due to the singularity of G and its derivatives, u and its normal derivative jump across S: 
 σγ =∂∂−∂∂=− )(/)(/,)()( inuenuiueu   (**) 
 
Here is a proof of the first jump 
relation, for ease of illustration, for 
the Laplace operator in 2D. Assume 
that u is continuously differentiable 
everywhere. Potential theory 
guarantees that it will be more than 
that, actually analytic, except 
possibly on the boundary at corners, 
etc. 
The exterior viz. interior points xe 
and xi, at distance δ from S, are 
surrounded by circular disks of radius a.  
As δ vanishes,  ∫

S
dSxxeGx )',()'(σ  and ∫

S
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contribute to the jump in u (but for du/dn it does). For the γ-term, we need the expression for dG/dn: 
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where αe is the subtended angle from xe to the intersection of the circle with S. The Gauss theorem was 
used: 
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Note the different sign on α! There follows 
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and as δ and a vanish, ve and vi approach a common limit so the integral vanishes because u is bounded, 
and the sum of αe and αi approach 2π, which ends the demonstration. (as usual, modulo the sign +/- ) 
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10 Scattering of plane wave on metallic circular cylinder 
  
We consider time-harmonic TM-waves of 
angular frequency ω in the plane. The only non-
zero E-component is Ez which we call u, and it 
satisfies the Helmholtz equation 

emωω
λ
π

====+∆
c

kuku 2,02 in the 

exterior domain. On Γ, the tangential E-field is 
zero, i.e., the sum of the incoming field and the 
scattered field vanishes, 

uINC + uSC = 0 
 
Any solution of the Helmholtz equation can be 
represented by an integral over Γ, 
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where G is the Green’s function, satisfying 
 )(),(),( 2 yxxyGkxyGx −=+∆ δ  
with δ the Dirac delta-function. σ and γ are single layer and double layer sources, viz., on Γ. For the 
exterior wave problem, G must be an outgoing wave at infinity, and thus must be the zeroth order Hankel 
function of the second kind, 
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Note that G is a function only of the difference y – x and that it has a logarithmic singularity at  
x – y = 0.  
Consider now the integral evaluated for points e and i just outside and just inside Γ. The jumps in function 
value [uSC] and normal derivative [∂uSC/∂n] are 
 
 uSC(e) – uSC (i) = γ, ∂uSC /∂n(e) – ∂uSC /∂n(i) = σ 
 
Define the scattered field to be continuous across Γ. This is possible whenever the interior Helmholtz 
problem with Dirichlet condition has a unique solution. This, in turn, holds whenever –k2 is NOT an 
eigenvalue of the Laplace operator inside Γ, i.e., for all but a number of discrete values of k2. Then γ = 0 
and the final integral equation for determining σ becomes 
 ∫

Γ

= dsxxGxxu INC )',()'()( σ  

This is a “Fredholm integral equation of the first kind” with kernel G.  First kind equations with smooth 
kernels are often ill-posed in the sense that short wavelength perturbations to σ are smoothed by the 
integration. The converse of this statement is that short wavelength components of the LHS are strongly 
magnified. Such problems have to be regularized by filtering out short wavelength noise. 
However, our kernel G is (weakly) singular and σ(x) contributes strongly to uINC(x). The problem of 
determining σ from uINC is reasonably well conditioned. 
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There remains to discretize the integral equation to produce a finite linear system of equations. We will 
use the collocation method which proceeds by approximating σ by a linear combination of a number of 
selected basis functions, 

 ∑
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selecting a number of field points zk just outside Γ and requiring that the equation be satisfied exactly at 
these points: 
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where M is usually chosen = n but may also be taken > n to provide some over-determination in ill-
conditioned cases. 
The simplest basis functions are constructed by replacing the curve Γ by a polygon with vertices z’k, 
edges ∆zk = z’k+1 – z’k. We take fk = 1 over edge k, 0 elsewhere, the “square pulse” basis functions which 
give a staircase representation of σ(x). zk are usually chosen as the midpoints of the edges, 
 zk = 1/2(z’k+1 – z’k) 
The integrals are evaluated exactly, if possible, or by numerical quadrature. The simplest scheme is to use 
a one-point rule for all integrals except for k = m, the self-contribution of element m, which becomes the 
diagonal element of the coefficient matrix A.  
This is a logarithmic singularity and we choose to use only the first few terms in the expansion of G 
around zm: (from e.g. Maple or Mathematics Handbook) 
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Note the last term: This is the Green’s function for the Laplace operator. 

10.1 Field computation for the Helmholtz equation in 2D 
We have seen that the field may be written 

 ∫
Γ
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where the Green's function is )(
4
1)( 2

0 krH
i

rG = , the zeroth order Hankel function of the second kind. 

Primed quantities refer to the curve, n' is the normal to the curve Γ and ds is the arc element. The 
coordinates are represented as complex numbers, z = x + iy, etc. 
Γ is approximated by a polygon with vertices z'i, i = 1,…, M, and the field points are  
zi, i = 1,…, n.  Using the fact that G is a function of k times the length |z - z'| only we may write 
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where the normal is i times tangent and the scalar product can be expressed 
<z1,z2> = Re(z1 conj(z2)) 

Let the midpoints of the polygon edges be z'i+1/2 and di = z - z'i+1/2., ∆j = z'i+1 - z'i. The final formula 
becomes 
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This is implemented by the m-file below, vectorized to compute the field on a mesh of m x n z-points at 
once.  
 
Exercise 
1. Compute σ and γ (as ∂u/∂n and u) for uSC = a plane wave eikx on a closed curve of your choice. Plot the 
field from σ and γ inside and outside the circle. Explain. 
2. The polygon edges ∆j = z'i+1 - z'i must be small enough to resolve the wavelength. Compare the fields 
computed in 1. with 5, 10, and 20 elements per wavelength 
3. The code is completely vectorized (no loops) but needs memory ns*m*n which easily becomes huge. 
Rewrite the code to use only a given amount of memory by cutting the set of z-points into reasonable size 
chunks, with a single loop over the chunks. The code is also wasteful in allocating space both to d,G, and 
Gder. At least one can be discarded without speed penalty. Fix that too. 
 
function E = field(z,zprime,gamma,sigma,k) 
% computes the field at the points z(1:np) (2D: z(p) = x(p) + i y(p)) 
% from the  
% single layer  sigma(1:ns-1) and  
% double layer  gamma(1:ns-1)  
% on the curve  zprime(1:ns). 
% Greens function for the Helmholtz (Laplace if k = 0) equation 
% (delsq + k^2)u = ... 
% and all of R2 i.e. H2,0(k|z - zprime|) viz. 1/(2pi) ln (|z-zprime|) 
%r 
[m,n]  = size(z); 
ns     = length(zprime); 
np     = m*n;  
z      = z(:);                                    % make columns 
gamma  = gamma(:); 
sigma  = sigma(:); 
zprime = zprime(:);   
 
delta  = diff(zprime);                           % edges 
zphalf = 0.5*(zprime(1:ns-1) + zprime(2:ns));    % midpoints 
d      = z*ones(1,ns-1) - ones(np,1)*(zphalf.'); % all distance vectors 
                                                 % at once 
G      = greenfunc(k,d);                         % single layer Green 
Gn     = k*greenfuncder(k,d);                    % double layer Green 
sig    = sigma.*abs(delta);                      % length element 
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E      = reshape(G*sig - 
(Gn.*real(1i*d./abs(d)*diag(conj(delta))))*gamma,m,n); 
 
function G = greenfunc(k,r) 
if k == 0 % Laplace 
 G = 1/2/pi * log(abs(r)); 
else 
 G = -0.25*i*besselh(0,2,k*abs(r)); 
end 
 
function G = greenfuncder(k,r) 
if k == 0 % Laplace 
 G = (1/2/pi)./abs(r); 
else 
 G = 0.25*i*besselh(1,2,k*abs(r)); 
end 
 

10.2 Exact solutions 
The code in the lab will work for any curve defined by the z’-points. For a circle of radius R we can 
compute the exact solution by Fourier expansion. 
 
PEC cylinder radius R 
The exterior field is 

 ∑
+∞

−∞=
=

m
m

im
m

SC krHecru )(),( 2φφ  

and the incoming plane wave may be written 
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m
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so we obtain from uSC + uINC = 0 on r = R 
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