

Boundary Conditions

Initial conditions

- Steady-state problem -> completely determined by BC
- Limit-cycle oscillation -> completely determined by BC
- Transient computation of an initial-value problem is dependent on the initial conditions
- Initial conditions may be important for the convergence to steady state

Boundary flow field

- Supersonic inflow
 - All information from boundary to interior
- Subsonic inflow
 - Most information from boundary to interior
 - pressure related information from interior to boundary.
- Subsonic outflow
 - Only pressure related information from boundary to interior
- Supersonic outflow
 - No information from boundary to interior
- Dictated by numerical stability

Boundary influence

If interaction between the boundary and interior flow fields is a problem:

- Extend the boundaries for external flows
 - typically 10-50 times the size of the object
 - Less problem in 3D flows
- Include the stagnation chamber or the true inflow/outflow geometries for internal flows
- Make empirical/mathematical corrections on the boundaries
- Warning for recirculation (=inflow) at outflow boundaries
- Be aware of the problem!!!

Inflow conditions for turbulence

- At inflow boundaries the turbulence quantities must be prescribed for turbulent computations
- Inflow turbulence levels mostly not fully known
- Solution may be strongly dependent on the inflow turbulence levels, but mostly only minor dependencies
- Important to prescribe realistic values for solution accuracy and numerical stability
- If problems: move the inflow boundary sufficiently far from the region of interest.
- The turbulence levels at the inflow boundary are also applicable as initial conditions.

Turbulence level

- Turbulence level, Tu
 - Tu < 0.3% in external aerodynamic flows
 - $Tu \approx 1\%$ in wind tunnels
 - $Tu \approx 5 10\%$ in internal turbo machinery flows
 - Tu < 2 3% usually do not influence the mean flow field.
 - Turbulent kinetic energy related to Tu

$$K = \frac{3}{2}(Tu \cdot U_{\infty})^2$$

Turbulence length scale

- Turbulent length scale
 - External flows $v_T / v \approx 1 10$ is a reasonable guess
 - Internal flows: turbulent length scale related to geometry

$$L = \frac{K^{3/2}}{\epsilon} = 1 - 10\%$$
 of geometrical scales

 Check also the length scale on which the advected turbulence changes. That should be in the order of, or larger than, typical geometrical scales.

$$\frac{K}{\varepsilon}U_{\infty}$$

Transition to turbulence

- The location of the transition point (or region)
 - Depends on surface roughness, free stream turbulence levels, noise, etc.
 - No general method to predict
 - Difficult to measure
 - The flow may be dependent on the transition location
 - Try to get information from experiments
 - Try to estimate (specific empirical relations exist)
 - Compute the growth rate of disturbances (a subject as big as CFD)
 - Assume the flow fully turbulent (if transition is unimportant)
- Transition location prescribed in CFD by setting laminar or turbulent walls
 - Laminar: $Re < 10^3$
 - Turbulent: $Re > 10^6$

