

Computational Grid

Geometry definition

- CAD definition of the structure (complex "engineering" geometries)
- Mathematical definition of surfaces (simple geometries)
- Surface grid (previous CFD or other computations)
- Need to be converted for input to grid generation tools
 - Preferable in "clean surface definitions" (e.g. splines)
 - Cleaning of CAD definitions no at all a trivial task

Element types

- 2D:

triangle ("tri")

2D prism (quadrilateral or "quad")

- 3D:

tetrahedron ("tet")

prism with quadrilateral base (hexahedron or "hex")

pyramid

prism with triangular base (wedge)

Body-fitted grids

- Grid lines follow the surfaces
- Geometry details can be captured
- Grid points easily clustered in viscous boundary layer
- Could be structured or unstructured or hybrid
- Most frequently used

Structured body-fitted grids

- Efficient solver algorithms
- Solution of high accuracy on well designed grids
- Multi-block approach for complex geometries
- No general automatic grid generation algorithm
- Grid generation a tedious "art" (complex grids can take months!)
- Grid points not easily located where they are

needed

Unstructured body-fitted grids

- Most common in commercial CFD solvers today
- Grid cells of different types (tetrahedra, hexahedra, prisms and pyramids)
- Cell connectivity information -> less efficient solver algorithms
- Grid generation can be highly automized
- Grid points easily clustered without influencing the whole computational domain

Grid quality

- Sufficiently fine grids
 - Gradients
 - Adaptation
- Shape of the cells
 - Skewness
 - Aspect ratio
- Orientation of cell faces
 - Normal to gradients
- Spatial distribution of cell sizes
 - Smooth change max 20%

smooth change in cell size

Grid quality ...

- Grid quality is particularly important around large gradients
- Grid quality may influence both
 - accuracy and
 - numerical stability
- Grid topology
- "Prismatic layers" in boundary layers (unstructured grids)
 - "structured" near-wall grid
 - Improves grid quality
 - High Re boundary layers