Today’s Topics

Object oriented programming
Defining Classes
Using Classes
References vs Values
Static types and methods

Why use classes?

* Why not just primitives?
// little baby alex

String nameAlex;
double welghtAlex;
// little baby david
String nameDavid;
double weightDavid;
// little baby david

String nameDavidZ; g DaV|d2?
double weightDavid2; Terrible @

500 Babies? That Sucks!

Why use classes?

‘ ‘ ‘ ‘ More nurses...

Nursel Nurse2 Nurse3 Nurse4

Babies ...

\ Babyl Baby2 Baby3 Baby4 /

Nursery

Why use classes?

Nursery

Note

* Class names are Capitalized

e 1 Class =1 file

 Having a main method means the class can
be run

Constructors

* Constructor name == the class name

* No return type — never returns anything
e Usually initialize fields

* All classes need at least one constructor

— If you don’t write one, defaults to
CLASSNAME () {

J

Baby constructor

public class Baby {
String name;
boolean 1sMale;
Baby (String myname, boolean maleBaby) {
name = myname;

1sMale = maleBaby;

Classes and Instances

// class Definition

public class Baby {..}

// class Instances
Baby shiloh = new Baby(“"Shiloh Jolie-Pitt”, true);
Baby knox = new Baby (“Knox Jolile-P1itt”, true) ;

Accessing fields

* Object.FIELDNAME

Baby shiloh = new Baby("Shiloh Jolie-Pitt”,
true)

System.out.println (shiloh.name) ;

System.out.println(shiloh.numPoops) ;

Calling Methods

e Object. METHODNAME([ARGUMENTS])

Baby shiloh = new Baby("Shiloh Jolie-Pitt”,
true)

shiloh.sayHi () ; // “Hi, my name is ...
shiloh.eat (1) ;

Primitives vs References

* Primitive types are basic java types
— int, long, double, boolean, char, short, byte, float
— The actual values are stored in the variable

* Reference types are arrays and objects
— String, int[], Baby, ...

References

Baby shilohl = new Baby(“"shiloh”);
Baby shiloh?2 = new Baby(“shiloh”);

Name=“shiloh”

reference reference

shilohl shiloh2

Name=“shiloh”

Public vs. Private

Public: others can use this

Private: only the class can use this

public/private applies to any
field or method

Mr. MeanGuy

public class Malicious {
public static void main(String[] args) {
maliciousMethod(new CreditCard());

}

static void maliciousMethod(CreditCard card)

{

card.expenses = 0;
System.out.println(card.cardNumber);

Access Control

public class CreditCard {
String cardNumber;
double expenses;
void charge(double amount) {
expenses = expenses + amount;
}

String getCardNumber(String password) A
1f (password.equals("SECRET!3*!")) {
return cardNumber;

}

return "jerkface";

Access Control DONE RIGHT

public class CreditCard {
private String cardNumber;
private double expenses;
public void charge(double amount) {
expenses = expenses + amount;

}
public String getCardNumber(String password)

{
if (password.equals("SECRET!3*!1")) {

return cardNumber:
}

return "jerkface";
}

}

Why Access Control

* Protect private information (sorta)
» Clarify how others should use your class
» Keep implementation separate from interface

Inheritance

Very Very Basic Inheritance

* Making a Game

public class Dude {
public String name;
public int hp = 100
public 1int mp = 0;

public void sayName () {
System.out.println (name) ;

}

public vold punchFace (Dude target) {
target.hp -= 10;

Inheritance..

* Now create a Wizard...

public class Wizard {
// ugh, gotta copy and paste
// Dude’s stuff

Inheritance?

* Now create a Wizard...

But Wait!

A Wizard does and has everything a
Dude does and has!

Inheritance?

* Now create a Wizard...

Don’t Act Now!

You don’t have to Copy & Paste!

Buy Inheritance!

e Wizard is a subclass of Dude

public class Wizard extends Dude {

J

Buy Inheritance!

 Wizard can use everything* the Dude has!
wizardl.hp += 1;

* Wizard can do everything® Dude can do!

wilzardl.punchFace (dudel) ;

* You can use a Wizard like a Dude too!

dudel .punchface (wizardl);

*except for private fields and methods

Buy Inheritance!

* Now augment a Wizard

public class Wizard extends Dude {
ArrayList<Spell> spells;
public class cast(String spell) {
// cool stuff here

mp —-= 10;

Inheriting from inherited classes

* What about a Grand Wizard?

public class GrandWizard extends Wizard {
public void sayName () {

System.out.println (“"Grand wizard” + name)

grandWizardl .name = “Flash”
grandWizardl.sayName () ;

((Dude) grandWizardl) .sayName () ;

How does Java do that?

e What Java does when it sees

N o U s e

grandWizardl .punchFace (dudel)
Look for punchFace () in the GrandWizard class
t’s not there! Does GrandWizard have a parent?
Look for punchFace () in Wizard class
t’s not there! Does Wizard have a parent?
ook for punchFace () in Dude class
~ound it! Call punchFace ()

Deduct hp from dudel

How does Java do that? pt2

e What Java does when it sees
((Dude) grandWizardl) .sayName ()

1. Cast to Dude tells Java to start looking in Dude
2. Look for sayName () in Dude class
3. Foundit! Call sayName ()

Parent of
Wizard, EIf..

Subclass
of Dude

Subclass of
Wizard

What’s going on?

Grand
Wizard

You can only inherit from one class

You can only inherit from one class

You can only inherit from one class

What if Thief and Elf both implement m

public void sneakUp ()

If they implemented differently,
which sneakUp () does BadElf call?

Java Doesn’t Know!!

Inheritance Summary

class A extends B {} == A is a subc
A has all the fields and methods t

ass of B

nat B has

A can add it’s own fields and methods

A can only have 1 parent

A can replace a parent’s method by re-

implementing it

If A doesn’t implement something Java

searches ancestors

So much more to learn!

http://java.sun.com/docs/books/tutorial/java/landl/subclasses.html

http://home.cogeco.ca/~ve3ll/jatutor5.htm

http://en.wikipedia.org/wiki/Inheritance (computer science)

http://www.google.com

http://java.sun.com/docs/books/tutorial/java/IandI/subclasses.html
http://home.cogeco.ca/~ve3ll/jatutor5.htm
http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://www.google.com

Arrays with items

Create the array bigger than you need

Track the next “available” slot

Book[] books = new Book[10];

int nextindex = 0;

books[nextindex] = b;

nextlndex = nextlndex + 1:

Arrays with items

Create the array bigger than you need

Track the next “available” slot

Book[] books = new Book[10];

int nextindex = 0;

books[nextindex] = b;

nextlndex = nextlndex + 1:

What if the library expands?

ArrayList

Modifiable list

Internally implemented with arrays

Features

- Get/put items by index
- Add items

- Delete items

- Loop over all items

Array — ArrayList

Book[] books = ArrayList<Book> books

= A List<Book>();
new Book[10]; new ArrayList<Book>()

int nextIndex = 0; -

books.add(b);
books[nextIndex] = b;

nextIndex += 1;

import java.util.ArrayList;
class ArrayListExample {
public static void main(String[] arguments) {
ArrayList<String> strings = new ArrayList<String>();
strings.add("Evan");
strings.add("Eugene");
strings.add("Adam");

System.out.printin(strings.size());
System.out.printin(strings.get(0));
System.out.printin(strings.get(1));

strings.set(0, "Goodbye");

strings.remove(1);

for (int 1 = 0; 1 < strings.size(); i++) {
System.out.println(strings.get(1));

}

for (String s : strings) {
System.out.printin(s);
}

}
}

