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Abstract—We consider downlink transmission in multi-cell
wireless networks where in each cell one base station is serving
multiple mobile terminals. There is no a priori channel state
information (CSI) available at base stations and mobile terminals.
We propose a low-complexity pilot-assisted opportunistic user
scheduling (PAOUS) scheme. The proposed scheme operates in
four subsequent phases: channel training; feedback transmission;
user scheduling; and data transmission. We deploy an orthogonal
pilot-assisted channel training scheme for acquiring CSI at
mobile terminals. Consequently, each mobile terminal obtains a
noisy estimation of the corresponding local CSI (i.e. channel gains
from base stations to the mobile terminal). Then, it makes a local
decision based on the estimated channel gains of the interfering
links (i.e. the links between base stations in neighboring cells
and the mobile terminal) and sends a one-bit feedback signal
to the base station of the corresponding cell. Each base station
schedules one mobile terminal for communication. We compute
the achievable rate region and the achievable degrees of freedom
(DoF) of the proposed transmission scheme. Our results show
that in a multi-cell network with K base stations and coherence
time T , the total DoF Kopt

(
1−

Kopt
T

)
is achievable given that the

number of mobile terminals in each cell scales proportional to
signal-to-noise-ratio. Since limited radio resources are available,
only a subset of base stations should be activated, where the
optimum number of active base stations is Kopt = min

{
K, T

2

}
.

This recommends that in large networks
(
K > T

2

)
, select only a

subset of the base stations to be active and perform the PAOUS
scheme within the cells associated to these base stations. Our
results reveal that, even with single antenna at base stations
and no a priori CSI at terminals, a non-trivial DoF gain can
be achieved. We also investigate the power allocation between
channel training and data transmission phases. Our study shows
that in large networks (many base stations) more power should
be allocated to channel training while in dense networks (many
mobile terminals in each cell) more power should be allocated
for data transmission.

I. INTRODUCTION
It has been provisioned that one of the most typical sce-

narios in 5G communications systems will be to deliver an
exponentially increasing demand for data rate, in ultra dense
deployments: such communication scenarios are characterized
by a high data rate requirement that needs to be sustained,
irrespective of the harsh urban propagation scenarios [1].
Moreover, the relatively high user density in such settings,
implies that channel training and feedback overhead is major
challenge. As a result, spectrally efficient transmission tech-
niques with low-overhead, are much desired.
In order to enhance spectral efficiency in multi-user com-

munication scenarios, the time-varying characteristics of wire-

less transmission medium can be effectively exploited to
opportunistically serve users that exhibit appropriate channel
conditions. Several opportunistic transmission schemes have
been developed including opportunistic scheduling [2]–[5],
opportunistic beamforming [6], random beamforming [7], and
opportunistic interference alignment [8]–[11]. These trans-
mission schemes have been investigated in several cellular
communication scenarios. The early opportunistic schemes
have been mainly designed for exploiting multi-user diversity
in single-cell communication scenarios (e.g. [2]–[4], [6], [7]).
Recently, it has been shown that opportunistic transmission
schemes can also mitigate inter-cell interference and thus
achieve multiplexing gain in multi-cell communication scenar-
ios (e.g. [8]–[11]).
The aforementioned schemes usually require certain channel

state information (CSI) to be known at base stations and
mobile terminals. For instance, the proposed schemes in [2]–
[11] require perfect CSI to be a priori available at mobile
terminals. Furthermore, [2], [3], [8] require base stations to
perfectly know CSI, and [4]–[7], [9]–[11] need only quantized
CSI to be available at base stations. However, acquiring CSI is
a challenging problem in practice and base station and mobile
terminals can attain only imperfect CSI. In particular, in dense
communication systems there are many users and only limited
radio resources are available for channel training and feedback
transmission. Therefore, low-complexity channel training and
feedback transmission schemes are desired that efficiently
utilize available radio resources. In practice, CSI is not a priori
available at mobile terminals and they may obtain only noisy
estimation of CSI via channel training schemes. The impact
of this on system performance is twofold: base stations need
to allocate part of their radio resources for channel training
and consequently less resources will be available for data
transmission; and imperfect CSI may cause imperfect schedul-
ing and erroneous decoding at mobile terminals and degrade
the performance of opportunistic transmission schemes. The
performance limits of opportunistic transmission with no a
priori CSI at mobile terminals has been less known.
We consider a dense cellular communication scenario in

which there is one base station in each cell serving a large
number of mobile terminals with no a priori CSI available
at terminals. We propose a pilot-assisted opportunistic user
scheduling (PAOUS) scheme, consisting of low-complexity
channel training, and one-bit feedback transmission. We com-



pute the achievable rate region for the proposed scheme, and
characterize the achievable degrees of freedom (DoF) region.
Our results reveal that in a multi-cell network with K base
stations and a coherence time T , the achievable sum-rate
increases as the number of mobile terminals scales. In addition,
the sum DoF Kopt

(
1−

Kopt
T

)
is achievable given that the

number of mobile terminals in each cell scales proportional to
signal-to-noise ratio (SNR). This result indicates that to max-
imize the achievable sum DoF only a subset of base stations
should be activated, where the optimum number of active base
stations is Kopt = min

{
K, T

2

}
. The radio resources can be

shared between channel training an data transmission phases.
Using the computed achievable rate results, we numerically
investigate the impact of power allocation between channel
training and data transmission phases. Our study reveal that
in large networks, which have many base stations, more
power should be allocated to channel training while in dense
networks, that have many mobile terminals in each cell, more
power should be allocated for data transmission.

II. MULTI-CELL MULTI-USER INTERFERENCE NETWORK
Consider downlink transmission in a network consisting K

neighbouring cells. In each cell, there is one single-antenna
base station serving N single-antenna mobile terminals. The
base station in the kth cell (k ∈ {1, . . . ,K}) is denoted
as BSk, and the mobile terminals are shown as MSkj (j ∈
{1, . . . , N}). Each base station intends to transmit independent
messages to mobile terminals in the corresponding cell.
The channel gain between BSk and MSpj (p ∈ {1, . . . ,K})

at time t′ is denoted as hp
j,k(t

′). We consider block-
fading channel model with coherence time T , where
channel gains are constant within one fading block, i.e.
hp
j,k(nT + t) = hp

j,k(nT ) (t ∈ {1, . . . , T − 1}), and change
to independent values across subsequent blocks. Channel
gains have zero mean complex Gaussian distribution, i.e.
hp
j,k ∼ CN (0, 1), and are mutually independent across differ-
ent users and cells. We assume that no a priori CSI is available
at mobile terminals and base stations.

III. PAOUS SCHEME
The proposed PAOUS scheme at each fading block is con-

ducted in three subsequent phases: channel training, feedback
transmission, user scheduling, and data transmission phases as
shown in Fig. 1. Forward transmission (pilot and data trans-
mission) and reverse transmission (feedback transmission) are
conducted in frequency division duplex (FDD) systems. In the
forward transmission, within each fading block, αT time slots
are allocated to channel training phase and (1−α)T time slots
are left for data transmission phase where α (0 < α < 1) is
the channel sharing factor. In the following, we explain each
phase in more details.

A. Channel Training Phase
We consider a pilot-assisted channel training scheme to

acquire an estimation of local CSI (i.e. channel gains be-
tween base stations and the corresponding mobile terminal)

at each mobile terminal. Channel training is performed in an
orthogonal fashion in which the training period is divided into
K equal training slots each of which has the duration of Tτ

(Tτ = αT/K). Each base station transmits Tτ pilot symbols
during one training slot and remains silent during other time
slots as shown in Fig. 2. Then, each mobile terminal in the
network estimates the gain of the corresponding link between
the active base station and itself. Consider transmission at
the nth fading block. The base station BSk (k ∈ {1, . . . ,K})
sends Tτ known pilot symbols as follows

Xk
τ (t) =

√
Pτ , t ∈ T k

n (1)

where T k
n = {nT + (k − 1)Tτ + 1, . . . , nT + kTτ}. Conse-

quently, the received signals at mobile terminal MSpj
(p ∈ {1, . . . ,K}, j ∈ {1, . . . , N}) are

Y p
τ,j(t) =

√
Pτh

p
j,k(nT ) + Zp

j (t), t ∈ T k
n ,

where Zp
j (t) is the receiver noise which has Gaussian distri-

bution with power N0, i.e. Zp
j (t) ∼ CN (0, N0). The mobile

terminal performs a minimum mean square error (MMSE)
estimation of the channel gain hp

j,k(nT ) as follows

h̃p
j,k(nT ) =

Pτ

N0 + TτPτ

nT+kTτ∑
t=nT+(k−1)Tτ+1

Y p
τ,j(t). (2)

The following equation holds

hp
j,k(nT ) = h̃p

j,k(nT ) + εpj,k(nT ), (3)

where εpj,k(nT ) denotes corresponding channel estimation
error. The random variables εpj,k(nT ) and h̃p

j,k(nT ) are in-
dependent zero mean Gaussian distributed with variances σ2

ε

and 1− σ2
ε , respectively, where

σ2
ε =

1

1 + TτPτ/N0
. (4)

At the end of the training phase, mobile terminal MSpj
obtains the estimation of local CSI, i.e. h̃p

j,k(nT ) (k ∈
{1, ...,K}). This noisy estimation of CSI can be used to
compute the feedback signal as described in the next part.

B. Feedback Transmission and User Selection Phase
Each mobile terminal measures the strength of interference

links and locally make a decision whether the strength of
interference links are below a certain threshold. Then, it sends
a one-bit feedback signal to the corresponding base station.
This measure is computed based on estimated local CSI.
Specifically, in the nth fading block, MSpj computes δ

p
j (nT )

that is defined as follows

δpj (nT ) �

K∑
i=1,i�=j

∣∣∣h̃p
j,i(nT )

∣∣∣2 . (5)

Next, it sends a one-bit feedback signal defined as follows

fp
j (nT ) �

{
1 δpj (nT ) ≤ εth
0 δpj (nT ) > εth

, (6)



Fig. 1: Schematic representation of different phases of the proposed PAOUS scheme.

where εth is a positive constant. A smaller εth implies that
lower interference is acceptable at mobile terminals with the
cost of a lower probability to find such a mobile terminal.
This is a design parameter that need to be optimized in order
to maximize the achievable sum-rate. The feedback channels
are orthogonal to each other. In practice, the feedback signals
are also prone to errors. Since we intend to investigate the
impact of channel estimation error on the performance of the
transmission scheme we assume that feedback channels are
error-free.
The base station BSk collects feedback signals from all

mobile terminals within the corresponding cell, i.e. fk
j (nT )

(j ∈ {1, ..., N}). A mobile terminal is called a candidate
mobile terminal to be scheduled if the corresponding feedback
signal is one. We define the set of candidate mobile terminals
in the kth cell as follows

Ak �
{
i
∣∣fk

i (nT ) = 1, i ∈ {1, ..., N}
}
. (7)

The number of candidate mobile terminals in the kth cell is
ρk = |Ak|, where |A| is the cardinality of the set A.
If ρk �= 0, then BSk schedules a randomly selected mobile

terminal from the set of the candidate mobile terminals Ak.
The selected mobile terminal is denoted as MSkαk

. Otherwise,
no mobile terminal will be scheduled. Since the network
is symmetric, a random scheduling ensures that all mobile
terminals will be scheduled with the same probability. This
implies that the proposed scheme indeed offers fairness.

C. Data Transmission Phase

There are N buffers at each base station, and each of
them stores messages that should be sent to a specific mobile
terminal. In the data transmission phase, each base station
communicates to the scheduled mobile terminal in the as-
sociated cell. Message are encoded according to the multi-
plexed coding scheme similar to the one proposed in [12].
Corresponding to each mobile terminal, there are multiple
codebooks each associated with a specific channel state. For a
given channel state, BSk (k ∈ {1, 2, . . . ,K}) selects message
mk

αk
independently with a uniform distribution from the set

M =
{
1, 2, . . . , 2N

′TdR̃k

}
, where R̃k > 0 is the code

rate, and N ′ is the number of fading blocks that span one
codeword. Then, it encodes the message mk

αk
to a length

BSk

BS2

BS1

Tτ

KTτ = αT Td = (1 − α)T

Fig. 2: Transmitted symbols by base stations BSk
(k ∈ {1, ...,K}) within one fading block. The crosshatched
red slot, the plain green slot, and the blue angle lined slots
denote no transmission, pilot symbols, and data symbols,
respectively.

N ′Td codeword {Xk
d,αk

(i)}N
′Td

i=1 . Moreover, the codewords
must satisfy a power constraint

E

[∣∣Xk
d,αk

∣∣2] < Pd. (8)

In fading block n, BSk sends
{
Xk

d,αk
(i)

}(n+1)T

i=nT+KTτ+1
during

Td data transmission time slots. All base stations transmit at
the same time and the same frequency band. Consequently,
the channel output at MSkαk

is

Y k
d,αk

(i) = hk
αk,k

(nT )Xk
d,αk

(i)

+

K∑
l=1,l �=k

hk
αk,l

(nT )X l
d,αk

(i) + Zk(i),

i = nT +KTτ + 1, . . . , (n+ 1)T (9)

where Zk(i) ∼ CN (0, N0). The mobile terminal collects
all N ′ received signals, decode the received codeword and
estimate the transmitted message.

IV. ACHIEVABLE RATE REGION

In this section, we study the achievable rate region of the
proposed transmission scheme.



Theorem 1. The base station-mobile terminal pair BSk−MSki
can achieve the following rate

Rk
i =

(
1−K

Tτ

T

)
γk
i Eh̃

⎡
⎢⎣log

⎛
⎜⎝1+ β

∣∣∣h̃∣∣∣2 P
N0 + β (Kσ2

ε + εth)P

⎞
⎟⎠
⎤
⎥⎦ ,

where

σ2
ε =

1

1 +KTτ ((1− (1− α)β) /α)P/N0
, (10)

γk
i =

1

N

(
1−

(
1− F

(
εth
σ2
ε

))N
)

F (x) �
γ
(
K − 1, x

2

)
Γ(K − 1)

, (11)

and h̃ ∼ CN
(
0, 1− σ2

ε

)
. The function Γ(z) �

∫∞

0
tz−1e−tdt

is the Gamma function, and γ(z, x) �
∫ x

0 tz−1e−tdt is the
lower incomplete Gamma function.

Proof. Assuming that MSkαk
is scheduled, the mutual infor-

mation between BSk and the selected mobile terminal MSkαk

can be lower bounded as follows

I
(
Xk

d,αk
;Y k

d,αk

∣∣h̃k
αk,1, . . . , h̃

k
αk,K

)
= h

(
Xk

d,αk

∣∣h̃k
αk,1

, . . . , h̃k
αk,K

)
−h

(
Xk

d,αk

∣∣h̃k
αk,1

, . . . , h̃k
αk,K

, Y k
d,αk

)
= h

(
Xk

d,αk

)
−h

(
Xk

d,αk
−X̂k

d,αk

∣∣h̃k
αk,1

, . . . , h̃k
αk,K

, Y k
d,αk

)
= log (2πePd)

−h
(
Xk

d,αk
−X̂k

d,αk

∣∣h̃k
αk,1

, . . . , h̃k
αk,K

, Y k
d,αk

)
= log (2πePd)

−h
(
Xk

d,αk
−X̂k

d,αk

∣∣h̃k
αk,1, . . . , h̃

k
αk,K

)
(a)

≥ log (2πePd)− log
(
2πeσ2

)
, (12)

where X̂k
d,αk

� f
(
h̃k
αk,1, . . . , h̃

k
αk,K

, Y k
d,αk

)
is a function of

the received signal and the estimated local CSI, and σ2 is
the variance of

(
Xk

d,αk
−X̂k

d,αk

)
given the estimated channel

gains. In this equation (a) follows the fact that the entropy
of a random variable with a given variance is upper bounded
with the entropy of a Gaussian distributed random variable. We
select X̂k

d,αk
to be the MMSE estimate of Xk

d,αk
as follows

X̂k
d =

E

[
X̂k

d

(
Y k
d,αk

)∗ ∣∣∣h̃k
αk,1, . . . , h̃

k
αk,K

]
E

[
Y k
d,αk

(
Y k
d,αk

)∗ ∣∣∣h̃k
αk,1

, . . . , h̃k
αk,K

]Y k
d,αk

=

(
h̃k
αk,k

)∗

Y k
d,αk

Pd

N0 + (Kσ2
ε + εth)Pd

. (13)

Therefore, the variance σ2 in (12) is

σ2 = E

[(
Xk

d − X̂k
d

)(
Xk

d − X̂k
d

)∗ ∣∣∣h̃k
αk,1, . . . , h̃

k
αk,K

]
(a)
= E

[
Xk

d

(
Xk

d − X̂k
d

)∗ ∣∣∣h̃k
αk,1, . . . , h̃

k
αk,K

]
=

Pd

N0 +

∣
∣
∣h̃k

αk,k

∣
∣
∣
2

Pd

N0+(Kσ2
ε+εth)Pd

, (14)

where (a) follows the orthogonality principle of MMSE es-
timator. Substituting σ2 in (12), the lower bound on mutual
information can be computed.
In addition, the probability that the mobile terminal MSki be

scheduled is γk
i = 1

N
γk, where γk is the probability that one

mobile terminal be scheduled in the kth cell. The probability
γk can be computed as follows

γk = Pr

{
N⋃
i=1

{
δki < εth

}}
= 1− Pr

{
N⋂
i=1

{
δki > εth

}}

= 1−
N∏
i=1

Pr
{
δki > εth

} (a)
= 1−

(
1−F

(
εth
σ2
ε

))N

, (15)

where (a) follows the fact that the random variable δki
σ2
ε
has

chi-square distribution with degrees of freedom 2(K−1). The
corresponding cumulative density function (CDF) is

F (x) =
γ
(
K − 1, x2

)
Γ(K − 1)

, (16)

where Γ(z) =
∫∞

0 tz−1e−tdt is the Gamma function, and
γ(z, x) =

∫ x

0 tz−1e−tdt is the lower incomplete Gamma
function.
Because of the energy conservation law we have

PταT/K + Pd(1− α)T = PT, (17)

where

Pd = βP

Pτ = K ((1− (1− α)β) /α)P. (18)

The parameter β (0 ≤ β ≤ 1/(1 − α)) is called power
allocation factor. Substituting Pτ in (4), σ2

ε given in (10) can
be computed.

Corollary 1. The achievable sum-rate of the network(
R∑ �

∑K
k=1

∑N
i=1 R

k
i

)
is

R∑=K

(
1−K

Tτ

T

)
γEh̃

⎡
⎢⎣log

⎛
⎜⎝N0+

β
∣∣∣h̃∣∣∣2 P

1 + β (Kσ2
ε + εth)P

⎞
⎟⎠
⎤
⎥⎦ ,

where

γ = 1−

(
1− F

(
εth
σ2
ε

))N

. (19)



A. Achievable Sum Degrees of Freedom
The achievable sum degrees of freedom, defined as the pre-

log factor of the achievable sum-rate in the asymptotically
high-SNR regime, is characterized in the following theorem.

Theorem 2. The achievable sum degrees of freedom is

d∑ = Kopt

(
1−

Kopt
T

)
, (20)

where

Kopt = min
{

T
2 ,K

}
, (21)

if the number of mobile terminals in each cell (N) scales
proportional to SNR.

Proof. We set εth = 1/P , and N ∝ P . Then, the
achievable sum degrees of freedom can be computed as
d∑ = limP→∞ R∑/ logP , where R∑ is given in Corol-
lary 1. Using the dominated convergence theorem [13] it can
be shown that this limit is equal to K

(
1− KTτ

T

)
. We select

Tτ = 1 to maximize the achievable sum degrees of freedom.
It can be shown that when K > T

2 , the number of active
base stations that maximizes the sum degrees of freedom is
K ′ = T

2 .

To maximize the sum degrees of freedom, or equivalently
the network throughput at high SNR regime, in large networks
(K > T/2), Theorem 2 recommends to turn on only a
subset of base stations, and perform the proposed PAOUS
scheme within the cells with active base station. The intuition
behind this result is that only limited radio resources are
available for channel training and data transmission, and if
in large networks we allocate orthogonal training slots to
all base station then there may not be resources left for
data transmission. Therefore, only a subset of base stations
should be activated. In addition, this theorem crystalizes the
dependency of the optimum number of active base stations
on the channel coherence time. It also worth mentioning that
since the network is symmetric a random base station selection
will ensure fairness among users in different cells.

B. Numerical Evaluation
In this section, we numerically evaluate the performance

of the proposed PAOUS scheme in sample communication
networks. We consider three-cell network (K = 3) with N
mobile terminals in each cell, whereN can be possibly large in
dense communication networks. Fig. 3 shows achievable sum-
rate versus SNR for different number of mobile terminals in
each cell (N). It can be seen that the sum-rate increases as N
increases. The reason is that as the number of mobile terminals
increases, it is more likely that the set of candidate mobile
terminals in (7) be nonempty and consequently a mobile
terminal be scheduled in each cell. This in fact indicates
that the proposed scheme in dense communication scenarios
(many users in each cell) can effectively mitigate the inter-cell
interference by properly selecting those mobile terminals that
experience less interference.
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Fig. 3: Achievable sum-rate versus power for different number
of mobile terminals in each cell (N).
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Fig. 4: Achievable sum-rate versus εth for different SNR
values.

Fig. 4 illustrates the achievable sum-rate as a function of
threshold εth defined in (6) for different SNR values. It can be
observed that, for a given SNR, a specific εth maximizes sum-
rate. The optimum εth decays as SNR increases. Increasing εth
in one hand increases the probability that a mobile terminal
be scheduled in each cell, on the other hand the corresponding
mutual information decays as a consequence of a larger inter-
ference. In high-SNR regime where interference is dominant
a smaller εth should be selected in order to limit the level of
interference and increase the achievable sum-rate.
Fig. 5 shows the achievable sum-rate versus β for different

values of N . It can be observed that for each value of N
a specific β (βopt) maximizes the achievable sum-rate. The
optimum value of β increases as N increases. This implies
that when there is a large number of mobile terminals in the
network more power should be allocated to data transmission
instead of channel training.
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Fig. 5: Achievable sum-rate versus β for different number of
users in each cell (N).
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Fig. 6: Achievable sum-rate versus β for different number of
base stations (K).

Fig. 6 shows the achievable sum-rate versus β for different
values of K . In this case also it can be seen that for each
value of K a specific β maximizes the achievable sum-rate.
The optimum value of β decreases as K increases. This
implies that when there are many base stations in the network
more power should be allocated to channel training instead
of data transmission. The reason is that when the number of
base stations increases, inter-cell interference become more
severe and more accurate channel estimation is required for
an effective user scheduling.

V. CONCLUSION
In this paper, we have investigated a typical scenario in

5G communication systems, where a large number of users in
a multi-cell multi-user network have to be served efficiently
(e.g. with low training and feedback overhead), when no a
priori CSI is available at terminals. We proposed a pilot-

assisted opportunistic user scheduling (PAOUS) scheme, and
showed that the proposed scheme is well-suited for such
scenarios: it offers low-computational complexity, and requires
only a one-bit feedback signal from mobile terminals to their
respective base stations to perform scheduling. Furthermore,
we computed the achievable rate region for the proposed
scheme. We have shown that the achievable sum-rate scales
as the number of mobile terminals in each cell increases. Our
results reveal that in a multi-cell network with K base stations,
given that the number of mobile terminals in each cell properly
scales with SNR, the sum DoF Kopt

(
1−

Kopt
T

)
is achievable,

where Kopt = min
{
K, T2

}
is the optimum number of the base

stations that need to be activated in the network. We have
also investigated the problem of power allocation between
channel training and data transmission phases. Our numerical
evaluations reveal that in large networks (many base stations)
more power should be allocated to channel training, while in
dense networks (many mobile terminals in each cell) more
power should be allocated to data transmission instead.
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