Lecture 8

Douglas Wikström KTH Stockholm dog@csc.kth.se

April 7, 2015

Discrete Logarithms

Discrete Logarithm Assumption

Let G_{q_n} be a cyclic group of prime order q_n such that $\lfloor \log_2 q_n \rfloor = n$ for $n = 2, 3, 4, \ldots$, and denote the family $\{G_{q_n}\}_{n \in \mathbb{N}}$ by G.

Definition. The **Discrete Logarithm (DL) Assumption** in G states that if generators g_n and y_n of G_{q_n} are randomly chosen, then for every polynomial time algorithm A

$$\Pr\left[A(g_n, y_n) = \log_{g_n} y_n\right]$$

is negligible.

Discrete Logarithm Assumption

Let G_{q_n} be a cyclic group of prime order q_n such that $\lfloor \log_2 q_n \rfloor = n$ for $n = 2, 3, 4, \ldots$, and denote the family $\{G_{q_n}\}_{n \in \mathbb{N}}$ by G.

Definition. The **Discrete Logarithm (DL) Assumption** in G states that if generators g and y of G are randomly chosen, then for every polynomial time algorithm A

$$\Pr\left[A(g,y) = \log_g y\right]$$

is negligible.

We usually remove the indices from our notation!

Diffie-Hellman Assumption

Definition. Let g be a generator of G. The **Diffie-Hellman** (**DH**) **Assumption** in G states that if $a, b \in \mathbb{Z}_q$ are randomly chosen, then for every polynomial time algorithm G

$$\Pr\left[A(g^a,g^b)=g^{ab}\right]$$

is negligible.

Decision Diffie-Hellman Assumption

Definition. Let g be a generator of G. The **Decision Diffie-Hellman (DDH) Assumption** in G states that if $a,b,c\in\mathbb{Z}_q$ are randomly chosen, then for every polynomial time algorithm A

$$\left| \mathsf{Pr} \left[A(g^a, g^b, g^{ab}) = 1 \right] - \mathsf{Pr} \left[A(g^a, g^b, g^c) = 1 \right] \right|$$

is negligible.

Relating DL Assumptions

- ► Computing discrete logarithms is at least as hard as computing a Diffie-Hellman element g^{ab} from g^a and g^b .
- Computing a Diffie-Hellman element g^{ab} from g^a and g^b is at least as hard as distinguishing a Diffie-Hellman triple (g^a, g^b, g^{ab}) from a random triple (g^a, g^b, g^c).
- ▶ In most groups where the DL assumption is conjectured, DH and DDH assumptions are conjectured as well.
- ► There exists special elliptic curves where DDH problem is easy, but DH assumption is conjectured!

Security of El Gamal

- ▶ Finding the secret key is equivalent to DL problem.
- Finding the plaintext from the ciphertext and the public key and is equivalent to DH problem.
- ► The semantic security of El Gamal is equivalent to DDH problem.

Brute Force and Shank's

Let G be a cyclic group of order q and g a generator. We wish to compute $\log_g y$.

- ▶ Brute Force. O(q)
- ▶ **Shanks.** Time and **Space** $O(\sqrt{q})$.
 - 1. Set $z = g^m$ (think of m as $m = \sqrt{q}$).
 - 2. Compute z^i for $0 \le i \le q/m$.
 - 3. Find $0 \le j \le m$ and $0 \le i \le q/m$ such that $yg^j = z^i$ and output x = mi j.

Birthday Paradox

Lemma. Let q_0, \ldots, q_k be randomly chosen in a set S. Then

- 1. the probability that $q_i=q_j$ for some $i\neq j$ is approximately $1-e^{-\frac{k^2}{2s}}$, where s=|S|, and
- 2. with $k \approx \sqrt{-2s \ln(1-\delta)}$ we have a collision-probability of δ .

Proof.

$$\left(\frac{s-1}{s}\right)\left(\frac{s-2}{s}\right)\cdot\ldots\cdot\left(\frac{s-k}{s}\right)\approx\prod_{i=1}^k e^{-\frac{i}{s}}\approx e^{-\frac{k^2}{2s}}.$$

Pollard- ρ (1/2)

Partition G into S_1 , S_2 , and S_3 "randomly".

▶ Generate "random" sequence $\alpha_0, \alpha_1, \alpha_2 \dots$

$$\alpha_0 = g$$

$$\alpha_i = \begin{cases} \alpha_{i-1}g & \text{if } \alpha_{i-1} \in S_1 \\ \alpha_{i-1}^2 & \text{if } \alpha_{i-1} \in S_2 \\ \alpha_{i-1}y & \text{if } \alpha_{i-1} \in S_3 \end{cases}$$

Pollard- ρ (1/2)

Partition G into S_1 , S_2 , and S_3 "randomly".

▶ Generate "random" sequence $\alpha_0, \alpha_1, \alpha_2 \dots$

$$\alpha_0 = g$$

$$\alpha_i = \begin{cases} \alpha_{i-1}g & \text{if } \alpha_{i-1} \in S_1 \\ \alpha_{i-1}^2 & \text{if } \alpha_{i-1} \in S_2 \\ \alpha_{i-1}y & \text{if } \alpha_{i-1} \in S_3 \end{cases}$$

▶ Each $\alpha_i = g^{a_i} y^{b_i}$, where $a_i, b_i \in \mathbb{Z}_q$ are known!

Pollard- ρ (1/2)

Partition G into S_1 , S_2 , and S_3 "randomly".

▶ Generate "random" sequence $\alpha_0, \alpha_1, \alpha_2 \dots$

$$\alpha_0 = g$$

$$\alpha_i = \begin{cases} \alpha_{i-1}g & \text{if } \alpha_{i-1} \in S_1 \\ \alpha_{i-1}^2 & \text{if } \alpha_{i-1} \in S_2 \\ \alpha_{i-1}y & \text{if } \alpha_{i-1} \in S_3 \end{cases}$$

- ▶ Each $\alpha_i = g^{a_i} y^{b_i}$, where $a_i, b_i \in \mathbb{Z}_q$ are known!
- ▶ If $\alpha_i = \alpha_j$ and $(a_i, b_i) \neq (a_j, b_j)$ then $y = g^{(a_i a_j)(b_j b_i)^{-1}}$.

Pollard- ρ (2/2)

- ▶ If $\alpha_i = \alpha_i$, then $\alpha_{i+1} = \alpha_{i+1}$.
- ▶ The sequence $(a_0, b_0), (a_1, b_1), \ldots$ is "essentially random".
- ► The Birthday bound implies that the (heuristic) expected running time is $O(\sqrt{q})$.
- ▶ We use "double runners" to reduce memory.

▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.

- ▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- ▶ Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.

- ▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- ▶ Compute $a_i = \log_{g} p_i$ for all $p_i \in \mathcal{B}$.
 - 1. Choose $s_j \in \mathbb{Z}_q$ randomly and attempt to factor $g^{s_j} = \prod_i p_i^{e_j,i}$ as an **integer**.

- ▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- ▶ Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.
 - 1. Choose $s_j \in \mathbb{Z}_q$ randomly and attempt to factor $g^{s_j} = \prod_i p_i^{e_j,i}$ as an **integer**.
 - 2. If g^{s_j} factored in \mathcal{B} and $e_j = (e_{j,1}, \dots, e_{j,B})$ is linearly independent of e_1, \dots, e_{j-1} , then $j \leftarrow j+1$.

- ▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- ▶ Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.
 - 1. Choose $s_j \in \mathbb{Z}_q$ randomly and attempt to factor $g^{s_j} = \prod_i p_i^{e_j,i}$ as an **integer**.
 - 2. If g^{s_j} factored in \mathcal{B} and $e_j = (e_{j,1}, \dots, e_{j,B})$ is linearly independent of e_1, \dots, e_{j-1} , then $j \leftarrow j+1$.
 - 3. If j < B, then go to (1)

- ▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- ▶ Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.

- ▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- ▶ Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.
- ► Repeat:
 - 1. Choose $s \in \mathbb{Z}_q$ randomly.
 - 2. Attempt to factor $yg^s = \prod_i p_i^{e_i}$ as an **integer**.
 - 3. If a factorization is found, then output $(\sum_i a_i e_i s) \mod q$.

Excercise: Why doesn't this work for any cyclic group?

 $ightharpoonup \mathbb{Z}_n$ additively? Bad for crypto!

- $ightharpoonup \mathbb{Z}_n$ additively? Bad for crypto!
- Large prime order subgroup of \mathbb{Z}_p^* with p prime. In particular p=2q+1 with q prime.

- $ightharpoonup \mathbb{Z}_n$ additively? Bad for crypto!
- Large prime order subgroup of \mathbb{Z}_p^* with p prime. In particular p=2q+1 with q prime.
- ► Large prime order subgroup of $GF_{n^k}^*$.

- $ightharpoonup \mathbb{Z}_n$ additively? Bad for crypto!
- Large prime order subgroup of \mathbb{Z}_p^* with p prime. In particular p=2q+1 with q prime.
- Large prime order subgroup of GF^{*}_{pk}.
- "Carefully chosen" elliptic curve group.

Elliptic Curves

Groups

- ▶ We have argued that discrete logarithm problems are hard in large subgroups of \mathbb{Z}_p^* and \mathbb{F}_q^* .
- Based on discrete logarithm problems (DL, DH, DDH) we can construct public key cryptosystems, key exchange protocols, and signature schemes.
- ► An elliptic curve is another candidate of a group where discrete logarithm problems are hard.

Motivation For Studying Elliptic Curves

- ▶ What if it turns out that solving discrete logarithms in \mathbb{Z}_p^* is easy? Elliptic curves give an **alternative**.
- ▶ The best known DL-algorithms in an elliptic curve group with prime order q are **generic algorithms**, i.e., they have running time $O(\sqrt{q})$
- ▶ Arguably we can use **shorter keys**. This is very important in some practical applications.

Definition

Definition. A plane cubic curve E (on Weierstrass form) over a field \mathbb{F} is given by a polynomial

$$y^2 = x^3 + ax + b$$

with $a, b \in \mathbb{F}$. The set of points (x, y) that satisfy this equation over \mathbb{F} is written $E(\mathbb{F})$.

Definition

Definition. A plane cubic curve E (on Weierstrass form) over a field \mathbb{F} is given by a polynomial

$$y^2 = x^3 + ax + b$$

with $a, b \in \mathbb{F}$. The set of points (x, y) that satisfy this equation over \mathbb{F} is written $E(\mathbb{F})$.

Every plane cubic curve over a field of characteristic $\neq 2,3$ can be written on the above form without changing any properties we care about.

Alternative Notation

We also write

$$g(x,y) = x^3 + ax + b - y^2 \quad \text{or}$$
$$y^2 = f(x)$$

where
$$f(x) = x^{3} + ax + b$$
.

Singular Points

Definition. A point $(u, v) \in E(\mathbb{E})$, with \mathbb{E} an extension field of \mathbb{F} , is **singular** if

$$\frac{\partial g(x,y)}{\partial x}(u,v) = \frac{\partial g(x,y)}{\partial y}(u,v) = 0.$$

Definition. A plane cubic curve is **smooth** if $E(\overline{\mathbb{F}})$ contains no singular points¹.

 $^{{}^{1}\}overline{\mathbb{F}}$ is the algebraic closure of \mathbb{F} .

What Does This Mean?

Note that

$$\frac{\partial g(x,y)}{\partial x}(x,y) = f'(x) = 3x^2 + a \quad \text{and} \quad \frac{\partial g(x,y)}{\partial y}(x,y) = -2y .$$

Thus, any singular point $(u, v) \in E(\mathbb{F})$ must have:

- ▶ v = 0,
- f(u) = 0, and f'(u) = 0.

Then f(x) = (x - u)h(x) and f'(x) = h(x) + (x - u)h'(x), so (u, v) is singular if v = 0 and u is a double-root of f.

Discriminant

In general a "discriminant" can be used to check if a polynomial has a double root.

Definition. The discriminant $\Delta(E)$ of a plane curve $y^2 = x^3 + ax + b$ is given by $-4a^3 - 27b^2$.

Lemma. The polynomial f(x) does not have a double root iff $\Delta(E) \neq 0$, in which case the curve is called **smooth**.

Line Defined By Two Points On Curve

Let I(x) be a line that intersects the curve in (u_1, v_1) and (u_2, v_2) . Then

$$I(x) = k(x - u_1) + v_1$$

where

$$k = \begin{cases} \frac{v_2 - v_1}{u_2 - u_1} & \text{if } (u_1, v_1) \neq (u_2, v_2) \\ \frac{3u_1^2 + a}{2v_1} & \text{otherwise} \end{cases}$$

Line Defined By Two Points On Curve

Let I(x) be a line that intersects the curve in (u_1, v_1) and (u_2, v_2) . Then

$$I(x) = k(x - u_1) + v_1$$

where

$$k = \begin{cases} \frac{v_2 - v_1}{u_2 - u_1} & \text{if } (u_1, v_1) \neq (u_2, v_2) \\ \frac{3u_1^2 + a}{2v_1} & \text{otherwise} \end{cases}$$

We are cheating a little here in that we assume that we don't have $u_1 = u_2$ and $v_1 \neq v_2$ or $v_1 = v_2 = 0$. In both such cases we get a line parallel with x = 0 that we deal with in a special way.

Finding the Third Point

▶ The intersection points between I(x) and the curve are given by the zeros of

$$t(x) = g(I(x), x) = f(x) - I(x)^2$$

which is a cubic polynomial with known roots u_1 and u_2 .

Finding the Third Point

▶ The intersection points between I(x) and the curve are given by the zeros of

$$t(x) = g(I(x), x) = f(x) - I(x)^2$$

which is a cubic polynomial with known roots u_1 and u_2 .

▶ To find the third intersection point (u_3, v_3) we note that

$$t(x) = (x - u_1)(x - u_2)(x - u_3) = x^3 - (u_1 + u_2 + u_3)x^2 + r(x)$$

where r(x) is linear. Thus, we can find u_3 from t's coefficients!

▶ Given any two points A and B the on the curve that defines a line, we can find a third intersection point C with the curve (even if A = B).

- ▶ Given any two points A and B the on the curve that defines a line, we can find a third intersection point C with the curve (even if A = B).
- ▶ The only exception is if our line I(x) is parallel with the *y*-axis.

- ▶ Given any two points A and B the on the curve that defines a line, we can find a third intersection point C with the curve (even if A = B).
- ▶ The only exception is if our line I(x) is parallel with the y-axis.
- ▶ To "fix" this exception we add a point at infinity O, roughly at $(0,\infty)$ (the projective plane). Intuition: the sides of a long straight road seem to intersect infinitely far away.

- ▶ We define the sum of A and B by (x, -y), where (x, y) is the third intersection point of the line defined by A and B with the curve.
- ▶ We define the inverse of (x, y) by (x, -y).
- ► The main technical difficulty in proving that this gives a group is to prove the associative law. This can be done with Bezout's theorem (not the one covered in class), or by (tedious) elementary algebraic manipulation.

Elliptic Curves

- There are many elliptic curves with special properties.
- ► There are many ways to represent the same curve and to implement curves as well as representing and implementing the underlying field.
- More requirements than smoothness must be satisfied for a curve to be suitable for cryptographic use.

Elliptic Curves

- There are many elliptic curves with special properties.
- There are many ways to represent the same curve and to implement curves as well as representing and implementing the underlying field.
- More requirements than smoothness must be satisfied for a curve to be suitable for cryptographic use.
- Fortunately, there are standardized curves.

(I would need a **very strong** reason not to use these curves and I would be **extremely careful**, consulting researchers specializing in elliptic curve cryptography.)