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Discrete Logarithm Assumption

Let Gqn be a cyclic group of prime order qn such that ⌊log2 qn⌋ = n

for n = 2, 3, 4, . . ., and denote the family {Gqn}n∈N by G .

Definition. The Discrete Logarithm (DL) Assumption in G

states that if generators gn and yn of G qn are randomly chosen,
then for every polynomial time algorithm A

Pr
[

A(gn, yn) = loggn
yn

]

is negligible.
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Discrete Logarithm Assumption

Let Gqn be a cyclic group of prime order qn such that ⌊log2 qn⌋ = n

for n = 2, 3, 4, . . ., and denote the family {Gqn}n∈N by G .

Definition. The Discrete Logarithm (DL) Assumption in G

states that if generators g and y of G are randomly chosen, then
for every polynomial time algorithm A

Pr
[

A(g , y) = logg y
]

is negligible.

We usually remove the indices from our notation!

DD2448 Foundations of Cryptography April 7, 2015



Discrete Logarithms Elliptic Curves

Diffie-Hellman Assumption

Definition. Let g be a generator of G . The Diffie-Hellman
(DH) Assumption in G states that if a, b ∈ Zq are randomly
chosen, then for every polynomial time algorithm A

Pr
[

A(ga, gb) = gab
]

is negligible.
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Decision Diffie-Hellman Assumption

Definition. Let g be a generator of G . The Decision
Diffie-Hellman (DDH) Assumption in G states that if
a, b, c ∈ Zq are randomly chosen, then for every polynomial time
algorithm A

∣

∣

∣
Pr

[

A(ga, gb , gab) = 1
]

− Pr
[

A(ga, gb, g c ) = 1
]
∣

∣

∣

is negligible.
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Relating DL Assumptions

◮ Computing discrete logarithms is at least as hard as
computing a Diffie-Hellman element gab from ga and gb.

◮ Computing a Diffie-Hellman element gab from ga and gb is at
least as hard as distinguishing a Diffie-Hellman triple
(ga, gb , gab) from a random triple (ga, gb , g c ).

◮ In most groups where the DL assumption is conjectured, DH
and DDH assumptions are conjectured as well.

◮ There exists special elliptic curves where DDH problem is
easy, but DH assumption is conjectured!
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Security of El Gamal

◮ Finding the secret key is equivalent to DL problem.

◮ Finding the plaintext from the ciphertext and the public key
and is equivalent to DH problem.

◮ The semantic security of El Gamal is equivalent to DDH
problem.
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Brute Force and Shank’s

Let G be a cyclic group of order q and g a generator. We wish to
compute logg y .

◮ Brute Force. O(q)

◮ Shanks. Time and Space O
(√

q
)

.

1. Set z = gm (think of m as m =
√
q).

2. Compute z i for 0 ≤ i ≤ q/m.

3. Find 0 ≤ j ≤ m and 0 ≤ i ≤ q/m such that yg j = z i and
output x = mi − j .
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Birthday Paradox

Lemma. Let q0, . . . , qk be randomly chosen in a set S . Then

1. the probability that qi = qj for some i 6= j is approximately

1− e−
k2

2s , where s = |S |, and
2. with k ≈

√

−2s ln(1− δ) we have a collision-probability of δ.

Proof.

(

s − 1

s

)(

s − 2

s

)

· . . . ·
(

s − k

s

)

≈
k
∏

i=1

e−
i
s ≈ e−

k2

2s .
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Pollard-ρ (1/2)

Partition G into S1, S2, and S3 “randomly”.

◮ Generate “random” sequence α0, α1, α2 . . .

α0 = g

αi =







αi−1g if αi−1 ∈ S1
α2
i−1 if αi−1 ∈ S2

αi−1y if αi−1 ∈ S3

DD2448 Foundations of Cryptography April 7, 2015



Discrete Logarithms Elliptic Curves

Pollard-ρ (1/2)

Partition G into S1, S2, and S3 “randomly”.

◮ Generate “random” sequence α0, α1, α2 . . .

α0 = g

αi =







αi−1g if αi−1 ∈ S1
α2
i−1 if αi−1 ∈ S2

αi−1y if αi−1 ∈ S3

◮ Each αi = gai ybi , where ai , bi ∈ Zq are known!
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Pollard-ρ (1/2)

Partition G into S1, S2, and S3 “randomly”.

◮ Generate “random” sequence α0, α1, α2 . . .

α0 = g

αi =







αi−1g if αi−1 ∈ S1
α2
i−1 if αi−1 ∈ S2

αi−1y if αi−1 ∈ S3

◮ Each αi = gai ybi , where ai , bi ∈ Zq are known!

◮ If αi = αj and (ai , bi ) 6= (aj , bj) then y = g (ai−aj)(bj−bi )
−1
.
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Pollard-ρ (2/2)

◮ If αi = αj , then αi+1 = αj+1.

◮ The sequence (a0, b0), (a1, b1), . . . is “essentially random”.

◮ The Birthday bound implies that the (heuristic) expected
running time is O(

√
q).

◮ We use “double runners” to reduce memory.
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.

1. Choose sj ∈ Zq randomly and attempt to factor g sj =
∏

i p
ej,i
i

as an integer.
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.

1. Choose sj ∈ Zq randomly and attempt to factor g sj =
∏

i p
ej,i
i

as an integer.
2. If g sj factored in B and ej = (ej,1, . . . , ej,B ) is linearly

independent of e1, . . . , ej−1, then j ← j + 1.
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.

1. Choose sj ∈ Zq randomly and attempt to factor g sj =
∏

i p
ej,i
i

as an integer.
2. If g sj factored in B and ej = (ej,1, . . . , ej,B ) is linearly

independent of e1, . . . , ej−1, then j ← j + 1.
3. If j < B, then go to (1)
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.

DD2448 Foundations of Cryptography April 7, 2015



Discrete Logarithms Elliptic Curves

Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.

◮ Repeat:

1. Choose s ∈ Zq randomly.
2. Attempt to factor yg s =

∏

i p
ei
i as an integer.

3. If a factorization is found, then output (
∑

i aiei − s) mod q.

Excercise: Why doesn’t this work for any cyclic group?
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Example Groups

◮ Zn additively? Bad for crypto!

DD2448 Foundations of Cryptography April 7, 2015



Discrete Logarithms Elliptic Curves

Example Groups

◮ Zn additively? Bad for crypto!

◮ Large prime order subgroup of Z∗

p with p prime. In particular
p = 2q + 1 with q prime.
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Example Groups

◮ Zn additively? Bad for crypto!

◮ Large prime order subgroup of Z∗

p with p prime. In particular
p = 2q + 1 with q prime.

◮ Large prime order subgroup of GF∗
pk
.
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Example Groups

◮ Zn additively? Bad for crypto!

◮ Large prime order subgroup of Z∗

p with p prime. In particular
p = 2q + 1 with q prime.

◮ Large prime order subgroup of GF∗
pk
.

◮ “Carefully chosen” elliptic curve group.
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Elliptic Curves
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Groups

◮ We have argued that discrete logarithm problems are hard in
large subgroups of Z∗

p and F
∗

q.

◮ Based on discrete logarithm problems (DL, DH, DDH) we can
construct public key cryptosystems, key exchange protocols,
and signature schemes.

◮ An elliptic curve is another candidate of a group where
discrete logarithm problems are hard.
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Motivation For Studying Elliptic Curves

◮ What if it turns out that solving discrete logarithms in Z
∗

p is
easy? Elliptic curves give an alternative.

◮ The best known DL-algorithms in an elliptic curve group with
prime order q are generic algorithms, i.e., they have running
time O(

√
q)

◮ Arguably we can use shorter keys. This is very important in
some practical applications.
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Definition

Definition. A plane cubic curve E (on Weierstrass form) over a
field F is given by a polynomial

y2 = x3 + ax + b

with a, b ∈ F. The set of points (x , y) that satisfy this equation
over F is written E (F).
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Discrete Logarithms Elliptic Curves

Definition

Definition. A plane cubic curve E (on Weierstrass form) over a
field F is given by a polynomial

y2 = x3 + ax + b

with a, b ∈ F. The set of points (x , y) that satisfy this equation
over F is written E (F).

Every plane cubic curve over a field of characteristic 6= 2, 3 can be
written on the above form without changing any properties we care
about.
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Alternative Notation

We also write

g(x , y) = x3 + ax + b − y2 or

y2 = f (x)

where f (x) = x3 + ax + b.
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Singular Points

Definition. A point (u, v) ∈ E (E), with E an extension field of F,
is singular if

∂g(x , y)

∂x
(u, v) =

∂g(x , y)

∂y
(u, v) = 0 .

Definition. A plane cubic curve is smooth if E (F) contains no
singular points1.

1
F is the algebraic closure of F.
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What Does This Mean?

Note that

∂g(x , y)

∂x
(x , y) = f ′(x) = 3x2 + a and

∂g(x , y)

∂y
(x , y) = −2y .

Thus, any singular point (u, v) ∈ E (F) must have:

◮ v = 0,

◮ f (u) = 0, and f ′(u) = 0.

Then f (x) = (x − u)h(x) and f ′(x) = h(x) + (x − u)h′(x), so
(u, v) is singular if v = 0 and u is a double-root of f .
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Discriminant

In general a “discriminant” can be used to check if a polynomial
has a double root.

Definition. The discriminant ∆(E ) of a plane curve
y2 = x3 + ax + b is given by −4a3 − 27b2.

Lemma. The polynomial f (x) does not have a double root iff
∆(E ) 6= 0, in which case the curve is called smooth.
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Line Defined By Two Points On Curve

Let l(x) be a line that intersects the curve in (u1, v1) and (u2, v2).
Then

l(x) = k(x − u1) + v1

where

k =

{

v2−v1
u2−u1

if (u1, v1) 6= (u2, v2)
3u21+a

2v1
otherwise
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Line Defined By Two Points On Curve

Let l(x) be a line that intersects the curve in (u1, v1) and (u2, v2).
Then

l(x) = k(x − u1) + v1

where

k =

{

v2−v1
u2−u1

if (u1, v1) 6= (u2, v2)
3u21+a

2v1
otherwise

We are cheating a little here in that we assume that we don’t have
u1 = u2 and v1 6= v2 or v1 = v2 = 0. In both such cases we get a
line parallel with x = 0 that we deal with in a special way.
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Finding the Third Point

◮ The intersection points between l(x) and the curve are given
by the zeros of

t(x) = g(l(x), x) = f (x) − l(x)2

which is a cubic polynomial with known roots u1 and u2.
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Finding the Third Point

◮ The intersection points between l(x) and the curve are given
by the zeros of

t(x) = g(l(x), x) = f (x) − l(x)2

which is a cubic polynomial with known roots u1 and u2.

◮ To find the third intersection point (u3, v3) we note that

t(x) = (x−u1)(x −u2)(x −u3) = x3− (u1+u2+u3)x
2+ r(x)

where r(x) is linear. Thus, we can find u3 from t’s
coefficients!
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From Intersection Points To Group Law

◮ Given any two points A and B the on the curve that defines a
line, we can find a third intersection point C with the curve
(even if A = B).
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From Intersection Points To Group Law

◮ Given any two points A and B the on the curve that defines a
line, we can find a third intersection point C with the curve
(even if A = B).

◮ The only exception is if our line l(x) is parallel with the y -axis.
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From Intersection Points To Group Law

◮ Given any two points A and B the on the curve that defines a
line, we can find a third intersection point C with the curve
(even if A = B).

◮ The only exception is if our line l(x) is parallel with the y -axis.

◮ To “fix” this exception we add a point at infinity O, roughly
at (0,∞) (the projective plane). Intuition: the sides of a long
straight road seem to intersect infinitely far away.
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From Intersection Points To Group Law

◮ We define the sum of A and B by (x ,−y), where (x , y) is the
third intersection point of the line defined by A and B with
the curve.

◮ We define the inverse of (x , y) by (x ,−y).

◮ The main technical difficulty in proving that this gives a group
is to prove the associative law. This can be done with
Bezout’s theorem (not the one covered in class), or by
(tedious) elementary algebraic manipulation.
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Elliptic Curves

◮ There are many elliptic curves with special properties.

◮ There are many ways to represent the same curve and to
implement curves as well as representing and implementing
the underlying field.

◮ More requirements than smoothness must be satisfied for a
curve to be suitable for cryptographic use.
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Elliptic Curves

◮ There are many elliptic curves with special properties.

◮ There are many ways to represent the same curve and to
implement curves as well as representing and implementing
the underlying field.

◮ More requirements than smoothness must be satisfied for a
curve to be suitable for cryptographic use.

◮ Fortunately, there are standardized curves.

(I would need a very strong reason not to use these curves
and I would be extremely careful, consulting researchers
specializing in elliptic curve cryptography.)
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