
Spring 2015

DD2457 Program Semantics and Analysis

Lab Assignment 1: Abstract Machines

D. Gurov A. Lundblad

Due: 24 April 2015

1 Introduction

This lab assignment is about implementing an interpreter for the While
language based on the notion of abstract machines developed in Chapter 4
of the course book. The attractiveness of abstract machines derives from
their conceptual simplicity, allowing both efficient implementations and for-
mal treatment such as formal proofs of language implementation correctness.

As part of the assignment, the While language is extended with an
arithmetic integer division operation giving rise to possible run–time errors
in the case of division by zero, and a try–catch statement for handling excep-
tions of this kind. The extension is treated both formally and implemented
in the interpreter.

The purpose of the lab assignment is to deepen the understanding of
the approach to the correct implementation of high–level programming lan-
guages discussed in the course book. In this approach, the language is spec-
ified through a natural semantics. The implementation is given by means
of a low–level abstract machine language, for which a structural operational
semantics is given, and a translation of statements of the source language
to sequences of instructions of the abstract machine. Correctness of the
implementation is established as a formal proof that the translation of any
statement, when executed by the abstract machine from any start state,
results in the same final state (if there is one) as specified by the natural
semantics.

1



This assignment also prepares the ground for the next assignment, where
the abstract machine is adapted to run with abstract values (properties) in-
stead of with concrete ones, supporting various program analyses.

The assignment is carried out in teams of (at most) two.

2 An Interpreter for While

Following the approach advocated in the course book, an interpreter for
While can be built that consists of two parts:

a) a compiler from While to the abstract machine (assembly) language
AM implementing the clauses in tables 4.2 and 4.3 in the book, and

b) a virtual machine for executing the rules of the operational semantics
of AM given in Table 4.1.

An important aspect of this approach is that the two transformations
have been proved to be correct with respect to the natural semantics of
While (see Theorem 4.20), the latter providing a formal specification for
the language. Thus, to produce a correct interpreter one has merely to
implement correctly the transformations. The idea is that this should not
pose great difficulty, due to the simple and straightforward nature of these
transformations.

When extending While one should strive to design the AM extention
so as to be able to reuse the existing proof (structure) as much as possible,
such as for instance validity of Lemma 4.18.

3 Exceptions

Let us add division a1/a2 to the operations in the arithmetic expressions
of our While language. Division by zero raises an exception; we therefore
extend the statements with a new exception–handling construct

try S1 catch S2

with the expected behaviour: if execution of S1 terminates normally in a
state, then the whole try–catch statement terminates normally in that state;
if execution of S1 terminates with an exception in a state, then statement S2

2



takes over from that state.

To adapt the operational semantics of While, we add the special error

value ⊥ to the set of integer values, letting Z⊥
def
= Z∪{⊥}, and re-define the

evaluation function A : AExp→ (State→ Z⊥) to capture division by zero
as the source of producing an exception, and propagation of the exception
value.

Evaluation of boolean expressions is handled similarly, by adding ⊥ to

the set of truth values, letting T⊥
def
= T ∪ {⊥}, and re-defining the eval-

uation function B : BExp → (State → T⊥) so that the exception value
propagates.

To distinguish between normal and exceptional termination, we intro-

duce the set of extended states EState
def
= State × {>,⊥}, where an ex-

tended state (s,>) is normal and (s,⊥) is exceptional. By abuse of notation,
we shall use s to denote the normal state (s,>), and ŝ to denote the excep-
tional state (s,⊥). This allows re–using much of the existing formalizations
when extending the semantics.

Of course, you are welcome to propose alternative formalizations.

4 Implementing the Interpreter

The interpreter you will implement should work roughly as follows.

1. A While program is loaded from an external file and parsed into an
abstract syntax tree (AST).

2. The AST is transformed into an AM program.

3. The resulting AM program is executed instruction by instruction in
a virtual machine, starting from an initial state provided by the user.
The complete trace of configurations is printed on standard output.
You can also provide an optional debugger mode for stepping through
the execution instruction by instruction, possibly with an indication
of where in the While program the execution is currently.

To ease the implementation part, we have prepared some fundamental
classes for you. A brief description of the classes can be found in Table 1.

3



Class Purpose

WhileParser To parse a While program located in file "prog.while",
simply invoke WhileParser.parse("prog.while").
The method returns the root element (an Stm object) of
the AST if the program was syntactically correct, and
throws an exception otherwise.

WhileVisitor This interface is implemented by classes that wish to tra-
verse a While ASTs. It is important that you familiarize
yourself with the visitor pattern by inspecting the sources
and/or browsing the web.

Pretty-

Printer

A sample class that pretty-prints a While program, us-
ing the visitor pattern.

Compile-

Visitor

An (almost) empty implementation of the visitor inter-
face, for you to complete.

whilesyntax.*

amsyntax.*

These classes are used to represent While and AM
ASTs. There is one class for each syntactical construct
of each language.

Main Contains a main method stub that parses and prints a
While program. A good place for you to put your calls
to your compiler and virtual machine.

Table 1: Brief description of the available classes.

The classes are located in the course directory: /info/DD2457/semant15/lab1.
You should copy these files into your working directory and make sure you
can compile and run Main.java:

> mkdir semanticslab

> cd semanticslab

> cp -r /info/DD2457/semant15/lab1/* .

> javac -cp .:java-cup-v11a.jar semant/Main.java

> java -cp .:java-cup-v11a.jar semant.Main samples/trycatchsample.while

If the compilation fails, make sure you are using Java version 1.5 or later
(module add jdk/1.5.0 should do the trick otherwise).

4



5 Tasks

The present lab assignment consists of the following tasks:

1. Complete the compiler and virtual machine of the skeleton in the
course directory. Test your interpreter on several small but mean-
ingful While programs, starting from different states.

2. As a specification, provide a natural semantics for While extended
with exceptions by redefining tables 1.1, 1.2 and 2.1 as discussed above
in Section 3. Use your natural semantics to execute the program:

x := 7; try x := x− 7;x := 7/x;x := x + 7 catch x := x− 7

from an arbitrary state s (hint: the final state should be s[x 7→ −7]).

3. As an implementation, provide an abstract machine semantics for
While extended with exceptions by extending suitably the instruc-
tion set of the abstract machine and redefining tables 4.1, 4.2 and 4.3.

(a) Use your abstract machine semantics to execute the program
above, from the same (arbitrary) state s, and compare the re-
sulting final states.

(b) Argue semi–formally for correctness of your semantics. More
specifically, explain how the original correctness proof is affected
by the current language extention.

4. Adapt your interpreter to the extended language. Test your interpreter
on several small but meaningful programs.

5. Write a report containing all your results, both theoretical and practi-
cal. In particular, the report should contain:

(a) the added rules of the natural semantics of the extended While
language, the added AM instructions, the added SOS rules of
the abstract machine, and the added rules of the translation;

(b) the derivation tree from Task 2 and execution from Task 3a;

(c) the adapted semi–formal correctness argument from Task 3b; and

(d) examples on which you tried your interpreter in Tasks 1 and 4.

5



6 Tips and Hints

• More information on the visitor pattern can be found at

http://en.wikipedia.org/wiki/Visitor_pattern

• To ease the transition to the next lab, you are adviced to let your
execution method have a signature similar to the following one:

public Configuration step(Configuration conf).

Furthermore it is recommended that you let your representation of a
configuration be immutable or cloneable (since the state space will be
traversed).

• It is up to you to decide how to implement the virtual machine. The
Inst class has an opcode field so one option would be to perform a
switch on this value.

• For stepping through your execution instruction by instruction (say,
when in debugger mode), the following line of code suspends the exe-
cution until the user presses enter:

new BufferedReader(new InputStreamReader(System.in)).readLine();

• A few useful sample programs can be found in the samples directory.
gcd.while also contains the corresponding AM code.

• The error messages from the parser may be a bit cryptic. Just keep in
mind that it is not allowed to have a trailing ”;” after the last statement
of a While program and that comments (lines starting with #) needs
to be terminated by a newline.

6


