Lab 3

Några slides att repetera inför Lab 3

Medelvärde och effektivvärde

Alla *rena* växelspänningar har medelvärdet 0. Intressantare är effektivvärdet – det kvadratiska medelvärdet.

$$U_{\text{med}} = \frac{1}{T} \int_{0}^{T} u(t) \, \mathrm{d}t = 0 \qquad U = \sqrt{\frac{\int_{0}^{T} u(t)^2 \, \mathrm{d}t}{T}}$$

Labinstrumentet Fluke 45 mäter sant effektivvärde

De flesta elektroniska instrument innehåller kretsar för omvandling till effektivvärde.

$$\bigvee \sim U_{\rm RMS} = \sqrt{\frac{\int_{0}^{T} u^2(t)}{T}}$$

Tror Du att omvandlingskretsarna hinner med vid frekvensen 300 kHz? Svar får Du vid Lab 3.

 $V_{O} = \sqrt{(V_{IN}^2)} AVG$

 $RC >> \frac{1}{2\pi f}$

Kvadrering

Medelvärde

٧x

Rotutdragning

VIN² AVG

卞c

<u>_vo²</u> /

R

DMM

Fluke 45

Likspänningsmätning. U_{DC} Likkomponent U_2 U medelvärde V=== Växelspänningsmätning. U_{AC} Växelkomponent effektivvärde U_2 U_1 v~ Sant effektivvärde $U_{\rm RMS} = \sqrt{U_{\rm DC}^2 + U_{\rm AC}^2}$ Samtidigt! v~ V===

En spänning har en 50 Hz sinusformad växelkomponent med effektivvärdet 10 V överlagrad på en 10 V ren likspänning.

Rita spänningen.

a)
$$U_{\min} = ? U_{\max} = ?$$

$$U_{\text{max}} = 10 + \sqrt{2} \cdot 10 = 24,1$$

 $U_{\text{min}} = 10 - \sqrt{2} \cdot 10 = -4,1$

En spänning har en 50 Hz sinusformad växelkomponent med effektivvärdet 10 V överlagrad på en 10 V ren likspänning.

Rita spänningen.

b) Hur mäter man medelvärdet med en DMM?

$$U_{\rm med} = U_{\rm DC} = 10 \text{ V}$$
 v=

En spänning har en 50 Hz sinusformad växelkomponent med effektivvärdet 10 V överlagrad på en 10 V ren likspänning.

Rita spänningen.

c) Hur mäter man växelspänningskomponenten med en DMM?

AC-inställning ger
$$U_{\rm AC} = 10$$
 V \bigtriangledown

En spänning har en 50 Hz sinusformad växelkomponent med effektivvärdet 10 V, överlagrad på en 10 V ren likspänning.

Rita spänningen.

U

v==

٧~

d) Hur mäter/beräknar man spänningens totala effektivvärde med en DMM?

$$V_{\rm RMS} = \sqrt{U_{\rm DC}^2 + U_{\rm AC}^2} = \sqrt{10^2 + 10^2} = 14,1 \,\rm V$$

Man trycker på båda knapparna samtidigt

Några kurvformer

Kurvform	Toppvärde	Effektivvärde	Crest faktor		
	$\hat{U} = 1$	$U = \frac{\hat{U}}{\sqrt{2}} = \frac{1}{\sqrt{2}}$	$\frac{ \hat{U} }{U} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2}$		
	$\hat{U} = 1$	U = 1	$\frac{ \hat{U} }{U} = \frac{1}{1} = 1$		
	$\hat{U} = 1$	$U = \frac{\hat{U}}{\sqrt{3}} = \frac{1}{\sqrt{3}}$	$\frac{ \hat{U} }{U} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3}$		

Crest faktor är ett mått på hur "extrem" en växelspänning är. Likspänning=1, fyrkantvåg=1, sinus=1,4 triangelvåg=1,7. Musik ligger kring 8 ... 10!

Några kurvformer vid laborationen

 $Avg = U_{pr}$

• Ren fyrkantvåg. Effektivvärdet?

80%

5

20%

3

• Sågtandvåg. Medelvärdet?

Digitaloscilloskop

• Lär dig oscilloskopet steg för steg med Tränings-signaler.

Blockdiagram (en kanal)

AC/DC

Den normala inställningen är att oscilloskopet ska vara **DC-kopplat** – även när man mäter på ACsignaler! **AC-kopplat** kopplar in en kondensator som blockerar en eventuell lik-komponent. (Detta ger viss fasvridning och viss dämpning av AC-signalen

Antag att Du vill detaljstudera störningar av likspänningsnivån från ett likspänningsaggregat.

DC-kopplat

Likspänning men med störningar.

AC-kopplat

Bara störningarna.

AC-kopplat med

hög förstärkning Störningarna kan nu detaljstuderas.

Automatiska mätningar jämförelse med DMM

v= U_{DC} Likkomponent medelvärde

effektivvärde

V~

U_{AC} Växelkomponent

AC-RMS-N

$$= V - U_{ACDC} \text{ Totalt effektivvärde } \text{DC-RMS-N}$$
$$U_{ACDC} = \sqrt{U_{DC}^2 + U_{AC}^2} \qquad U_{DC-RMS} = \sqrt{U_{Average}^2 + U_{AC-RMS}^2}$$

Funktionsgeneratorn

•Tryck FREQUENCY, AC eller DC. För varje ytterligare intryckning av knappen markeras en siffra/symbol som kan förändras.

• Den siffra/symbol som markerats på displayen blinkar.

• Decimalkommats position kan förändras med knapparna ÷10 eller ×10. Siffervärdet kan ställas in genom att vrida på inställningsratten.

Inställning av frekvens

Tryck på någon av knapparna FREQUENCY för att förbereda frekvensinställning. Välj område med ÷10 eller ×10 om så behövs.

Tryck på FREQUENCY upp/ner för att välja siffra. Ställ in siffran med inställningsratten. Upprepa för andra siffror om så behövs.

Val av Vågform

Förbered valet genom att trycka på någon av knapparna WAVEFORM. Tryck därefter återigen på WAVEFORM ända tills rätt vågform markerats.

 $= \wedge \wedge \neg \neg \neg \land \land \land \land \land$

Mätningar med funktionsgeneratorn

Funktionsgenerator PM5139				Oscilloskop DSO-X 2014A						DMM Fluke 45				
WAVE- Form #	DC [V]	AC [Vt-t]	FREQ [kHz]	DUTY %	Rita kurva	Avg-N [V]	Pk-Pk [V]	Ereq [kHz]	Duty %	AC-RMS [V]	DC-RMS [V]		U _{AC} [V]	U _{RMS} [V]
$1 \ { m sinus} \ \sim$	0	1	1	_		0			_			0		_
$2 \ { m sinus} \ \sim$	0	1	100			0						0		_
$3 \ { m sinus} \ \sim$	0	1	500	_		0			_		_	0		_
$4 \ { m sinus} \ \sim$	1	1	2	_					_					
5 fyrkant □_	0	2	1	50		0			50			0		
6 fyrkant □_	2,5	2,5	30	50					50					
7 fyrkant □_	3	0,5	3	50					50					
8 PWM	3	5	300	20										
9 SAW	0	0,8	1	_					_					