IE1206 Embedded Electronics

Le1	Le2	PIC-block Documentation, Seriecom Pulse sensors	
Le3	Ex1		
Le4	Ex2	Kirchhoffs laws Node analysis Two-terminals R2R AD	
Le5	Ex3	LAB2 Two-terminals, AD, Comparator/Schmitt	
Le6	Ex4	Le7	KC3 LAB3 Transients PWM Step-up, RC-oscillator
Le8	Ex5	Le9	or j ω PWM CCP CAP/IND-senso
Ex6	Le10	Le11	KC4 LAB4 LC-osc, DC-motor, CCP PWM
Le12	Ex7	Display	LP-filter Trafo - Display of programing task
Le13		Written exam	Trafo, Ethernet contact

$R L C$

An impedance which contain inductors and capacitors have, depending on the frequency, either inductive character IND, or capacitive character CAP.
An important special case occurs at the frequency where capacitances and inductances are equally strong, and their effects cancel each other out. The impedance becomes purely resisistiv. The phenomenon is called the resonance and the frequency on which this occurs is the resonant frequency.

Reactance frequency dependency

$$
\begin{gathered}
\left|X_{L}\right|=\omega \cdot L \quad\left|X_{C}\right|=\frac{1}{\omega \cdot C} \\
\omega=2 \pi f
\end{gathered}
$$

William Sandqvist william@kth.se

RLC impedances

- At a certain frequence X_{L} and X_{C} has the same amount.

$$
\begin{gathered}
\left|X_{L}\right|=\omega \cdot L \quad\left|X_{C}\right|=\frac{1}{\omega \cdot C} \\
\omega=2 \pi f
\end{gathered}
$$

William Sandqvist william@kth.se

How big is U ? (13.1)

The three volt meters show the same, 1 V , how much is the alternating supply voltage U ? (Warning, teaser)

William Sandqvist william@kth.se

How big is U ? (13.1)

The three volt meters show the same, 1 V , how much is the alternating supply voltage U ? (Warning, teaser)

William Sandqvist william@kth.se

How big is U ? (13.1)

The three volt meters show the same, 1 V , how much is the alternating supply voltage U ? (Warning, teaser)

Since volt meters show the "same" and the current I is

$$
R=\left|X_{\mathrm{L}}\right|=\left|X_{\mathrm{C}}\right| \quad R=\omega L=\frac{1}{\omega C}
$$ common:

William Sandqvist william@kth.se

If $\left|X_{\mathrm{L}}\right|=\left|X_{\mathrm{C}}\right|=2 R$?

Suppose the AC voltage U still 1 V , but the reactances are twice as big. What will the voltmeters show?

$$
\omega L=\frac{1}{\omega C}=2 \cdot R
$$

William Sandqvist william@kth.se

If $\left|X_{\mathrm{L}}\right|=\left|X_{\mathrm{C}}\right|=2 R$?

Suppose the AC voltage U still 1 V , but the reactances are twice as big. What will the voltmeters show?

$$
\omega L=\frac{1}{\omega C}=2 \cdot R
$$

If $\left|X_{\mathrm{L}}\right|=\left|X_{\mathrm{C}}\right|=2 R$?

Suppose the AC voltage U still 1 V , but the reactances are twice as big. What will the voltmeters show?

$\omega L=\frac{1}{\omega C}=2 \cdot R$

At resonance, the voltage over the reactances can be many times higher than the AC supply voltage.

William Sandqvist william@kth.se

Tesla coil

Many builds "Tesla" coils to gain some excitement in life...

[^0]William Sandqvist william@kth.se

Inductor quality factor Q

Usually it is the internal resistance of the coil which is the resistor in the RLC circuit. The higher the coil AC resistance ωL is in relation to the DC resistance r, the larger the voltage across the coil at a resonance get. This ratio is called the coil quality factor Q. (or Q-factor).

$$
Q=\frac{X_{\mathrm{L}}}{r}=\frac{\omega \mathrm{L}}{r} \Rightarrow U_{\mathrm{UT}} \approx Q \cdot U_{\mathrm{IN}}
$$

Series resonance

$$
\underline{U}=\underline{I} \cdot\left(r+\mathrm{j} \omega L+\frac{1}{\mathrm{j} \omega C}\right)=\underline{I} \cdot\left(r+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right)\right)
$$

Series resonance

$$
\underline{U}=\underline{I} \cdot\left(r+\mathrm{j} \omega L+\frac{1}{\mathrm{j} \omega C}\right)=\underline{I} \cdot\left(r+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right)\right)
$$

The Impedance is real when the imaginary part is " 0 ". This will happen at angular
 frequency ω_{0} (frequency f_{0}).

Series resonance

$$
\underline{U}=\underline{I} \cdot\left(r+\mathrm{j} \omega L+\frac{1}{\mathrm{j} \omega C}\right)=\underline{I} \cdot\left(r+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right)\right)
$$

The Impedance is real when the imaginary part is " 0 ".
This will happen at angular frequency $\omega_{0}\left(\right.$ frequency $\left.f_{0}\right)$.

$$
\operatorname{Im}[\underline{Z}]=\omega L-\frac{1}{\omega C}=0 \Rightarrow \omega_{0}=\frac{1}{\sqrt{L C}} f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

Series resonance phasor diagram

$$
\underline{U}=\underline{I} \cdot\left(r+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right)\right)
$$

Series resonance phasor diagram

$$
\underline{U}=\underline{I} \cdot\left(r+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right)\right)
$$

$$
\omega=\omega_{0}
$$

William Sandqvist william@kth.se

Series resonance phasor diagram

$$
\underline{U}=\underline{I} \cdot\left(r+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right)\right)
$$

Series resonance circuit Q

It is the resistance of the resonant circuit, usually coil internal resistance, which determines how pronounced resonance phenomenon becomes. It is customary to "normalize" the relationship between the different variables by introducing the resonance angular frequency ω_{0} together with the peak current $\boldsymbol{I}_{\text {max }}$ in the function $I(\omega)$ with parameter \boldsymbol{Q} :

$$
\begin{aligned}
& \omega_{0}=\frac{1}{\sqrt{L C}} \quad Q=\frac{\omega_{0} L}{r} \\
& \underline{I}=\frac{I_{\max }}{\left(1+\mathrm{j} Q\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)\right)}
\end{aligned}
$$

Normalized chart of the series resonant circuit. A high Q corresponds to a narrow
resonance peak.

Bandwidth BW

At two different angular frequencies becomes imaginary Im and real part Re in the denominator equal. I is then $I_{\text {max }} / \sqrt{ } 2 \quad(\approx 71 \%)$.
The Bandwidth $B W=\Delta \omega$ is the distans between those two angular frequencies.

$$
\begin{gathered}
\underline{I}=\frac{I_{\max }}{\left(1+\sqrt{Q\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)}\right)} \\
\operatorname{Re}=\mathrm{Im}
\end{gathered}
$$

$$
B W[\mathrm{rad} / \mathrm{s}]=\Delta \omega=\omega_{2}-\omega_{1}=\frac{\omega_{0}}{Q} \quad \omega_{0}^{2}=\omega_{2} \cdot \omega_{1} \quad \omega_{2}, \omega_{1}=\omega_{0}\left(\pm \frac{1}{2 Q}+\sqrt{\frac{1}{(2 Q)^{2}}+1}\right)
$$

- More convenient formulas

Example, series resonance circuit

$$
\begin{aligned}
& C=25 \mathrm{nF} \\
& f_{0}=100 \mathrm{kHz} \\
& B W=\Delta f=12,5 \mathrm{kHz} \\
& Q=? \quad L=? r=?
\end{aligned}
$$

William Sandqvist william@kth.se

Example, series resonance circuit

$$
\begin{aligned}
& C=25 \mathrm{nF} \\
& f_{0}=100 \mathrm{kHz} \\
& B W=\Delta f=12,5 \mathrm{kHz} \\
& Q=? \quad L=? r=? \\
& Q=\frac{f_{0}}{\Delta f}=\frac{100}{12,5}=8
\end{aligned}
$$

William Sandqvist william@kth.se

Example, series resonance circuit

$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=\Delta f=12,5 \mathrm{kHz}$
$Q=$? $L=? r=$?
$Q=\frac{f_{0}}{\Delta f}=\frac{100}{12,5}=8$

$f_{0}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L=\frac{1}{\left(2 \pi f_{0}\right)^{2} C}=\frac{1}{\left(2 \pi \cdot 100 \cdot 10^{3}\right)^{2} \cdot 25 \cdot 10^{-9}}=0,1 \mathrm{mH}$

Example, series resonance circuit

$$
\begin{aligned}
& C=25 \mathrm{nF} \\
& f_{0}=100 \mathrm{kHz} \\
& B W=\Delta f=12,5 \mathrm{kHz} \\
& Q=? L=? r=? \\
& Q=\frac{f_{0}}{\Delta f}=\frac{100}{12,5}=8 \\
& f_{0}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L=\frac{1}{\left(2 \pi f_{0}\right)^{2} C}=\frac{1}{\left(2 \pi \cdot 100 \cdot 10^{3}\right)^{2} \cdot 25 \cdot 10^{-9}}=0,1 \mathrm{mH} \\
& Q=\frac{X_{L}}{r}=\frac{2 \pi f_{0} \cdot L}{r} \Rightarrow r=\frac{2 \pi f_{0} \cdot L}{Q}=\frac{2 \pi \cdot 100 \cdot 10^{3} \cdot 0,1 \cdot 10^{-3}}{8} \approx 8 \Omega
\end{aligned}
$$

How big is I ? (13.2)

The three ammeters show the same, 1 A , how much is the AC supply current I ? (Warning, teaser)

William Sandqvist william@kth.se

How big is I ? (13.2)

The three ammeters show the same, 1 A , how much is the AC supply current I ? (Warning, teaser)

William Sandqvist william@kth.se

How big is $I ?(13.2)$

The three ammeters show the same, 1 A , how much is the AC supply current I? (Warning, teaser)

I_{L} and I_{C} becomes a circulating current decoupled from $I_{\mathrm{R}}, I_{\mathrm{L}}, I_{\mathrm{C}}$ can be many times bigger than the supply current $I=I_{\mathrm{R}}$. This is parallel resonance.

Ideal parallel resonance circuit

The resonance frequency has exactly the same expression as for the series resonant circuit, but otherwise the circuit has reverse character, IND at low frequencies and CAP at high. At resonance, the impedance is real $=R$.

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

Ideal parallel resonance circuit

$$
\underline{Z}=R\|L\| C=\frac{1}{\frac{1}{R}+\frac{1}{\mathrm{j} \omega L}+\mathrm{j} \omega C}=\frac{1}{\frac{1}{R}+\mathrm{j}(\underbrace{\omega C-\frac{1}{\omega L}}_{=0})}
$$

The resonance frequency has exactly the same expression as for the series resonant circuit, but otherwise the circuit has reverse character, IND at low frequencies and CAP at high. At resonance, the impedance is real $=R$.

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

Actual parallel resonant circuit

Actual parallel resonant circuits has a series resistance inside the coil. The calculations become more complecated and the resonance frequency will also differ slightly from our formula.

Example, actual circuit (13.3)

$$
\begin{aligned}
& \underline{I}=\underline{I}_{\mathrm{C}}+\underline{I}_{\mathrm{LR}}=\frac{U}{\frac{1}{\mathrm{j} \omega C}}+\frac{U}{r+\mathrm{j} \omega L} \cdot \frac{(r-\mathrm{j} \omega L)}{(r-\mathrm{j} \omega L)}=U \cdot\left(\mathrm{j} \omega C+\frac{r-\mathrm{j} \omega L}{r^{2}+(\omega L)^{2}}\right)= \\
& =U \cdot\left(\frac{r}{r^{2}+(\omega L)^{2}}+\mathrm{j}\left(\omega C-\frac{\omega L}{r^{2}+(\omega L)^{2}}\right)\right)
\end{aligned}
$$

Example, actual circuit (13.3)

Metal Detector

[^1]
Series or parallel resistor

In manual computation for simplicity one usually uses the formulas of the ideal resonant circuit. At high Q and close to the resonance frequency f_{0} the deviations becomes insignificant.

At $\mathbf{Q}>\mathbf{1 0}$ are the two circuits "interchangeable".
$\omega_{0} \approx \frac{1}{\sqrt{L C}}$

Alternative definition of Q with R_{P}

(applies approximately for $\boldsymbol{Q}>10$)

Example, parallel circuit

> Parallel circuit.
> $C=25 \mathrm{nF}$
> $f_{0}=100 \mathrm{kHz}$
> $B W=1250 \mathrm{~Hz}$
> $L=? r=?$

Example, parallel circuit

Parallel circuit.

$$
\begin{aligned}
& C=25 \mathrm{nF} \\
& f_{0}=100 \mathrm{kHz} \\
& B W=1250 \mathrm{~Hz} \\
& L=? r=? \\
& Q=\frac{f_{0}}{\Delta f}=\frac{100 \cdot 10^{3}}{1250}=80
\end{aligned}
$$

Example, parallel circuit

Parallel circuit.

$$
\begin{aligned}
& C=25 \mathrm{nF} \\
& f_{0}=100 \mathrm{kHz} \\
& B W=1250 \mathrm{~Hz} \\
& L=? r=? \\
& Q=\frac{f_{0}}{\Delta f}=\frac{100 \cdot 10^{3}}{1250}=80
\end{aligned}
$$

$80>10$ justifying
counting with the ideal model.

Example, parallel circuit

Parallel circuit.

$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=1250 \mathrm{~Hz}$

$L=$? $r=$?
$Q=\frac{f_{0}}{\Delta f}=\frac{100 \cdot 10^{3}}{1250}=80$
$80>10$ justifying
counting with the ideal model.
$f_{0}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L=\frac{1}{\left(2 \pi f_{0}\right)^{2} C}=\frac{1}{\left(2 \pi \cdot 100 \cdot 10^{3}\right)^{2} \cdot 25 \cdot 10^{-9}}=0,1 \mathrm{mH}$

Example, parallel circuit

$$
\begin{aligned}
& \text { Parallel circuit. } \\
& C=25 \mathrm{nF} \\
& f_{0}=100 \mathrm{kHz} \\
& B W=1250 \mathrm{~Hz} \\
& L=? r=? \\
& Q=\frac{f_{0}}{\Delta f}=\frac{100 \cdot 10^{3}}{1250}=80 \quad \begin{array}{l}
80>10 \text { justifying } \\
\text { counting with the ideal } \\
\text { model. }
\end{array} \\
& f_{0}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L=\frac{1}{\left(2 \pi f_{0}\right)^{2} C}=\frac{1}{\left(2 \pi \cdot 100 \cdot 10^{3}\right)^{2} \cdot 25 \cdot 10^{-9}}=0,1 \mathrm{mH} \\
& Q=\frac{R_{\mathrm{P}}}{X_{\mathrm{L}}}=\frac{R_{\mathrm{P}}}{2 \pi f_{0} \cdot L} \Rightarrow R_{\mathrm{P}}=2 \pi f_{0} \cdot L \cdot Q=2 \pi \cdot 100 \cdot 10^{3} \cdot 0,1 \cdot 10^{-3} \cdot 80 \approx 5027 \Omega
\end{aligned}
$$

Example, parallel circuit

$$
\begin{array}{ll}
\begin{array}{l}
\text { Parallel circuit. } \\
C=25 \mathrm{nF}
\end{array} \\
f_{0}=100 \mathrm{kHz} & \begin{array}{l}
\text { Answer with a series } \\
B W=1250 \mathrm{~Hz} \\
\text { resistor! }
\end{array} \\
L=? r=?
\end{array} \begin{aligned}
& \text { 80 > } 10 \text { justifying } \\
& Q=\frac{f_{0}}{\Delta f}=\frac{100 \cdot 10^{3}}{1250}=80 \quad \begin{array}{l}
\text { counting with the ideal } \\
\text { model. }
\end{array} \\
& f_{0}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L=\frac{1}{\left(2 \pi f_{0}\right)^{2} C}=\frac{1}{\left(2 \pi \cdot 100 \cdot 10^{3}\right)^{2} \cdot 25 \cdot 10^{-9}}=0,1 \mathrm{mH} \\
& Q=\frac{R_{\mathrm{P}}}{X_{\mathrm{L}}}=\frac{R_{\mathrm{P}}}{2 \pi f_{0} \cdot L} \Rightarrow R_{\mathrm{P}}=2 \pi f_{0} \cdot L \cdot Q=2 \pi \cdot 100 \cdot 10^{3} \cdot 0,1 \cdot 10^{-3} \cdot 80 \approx 5027 \Omega \\
& r_{\mathrm{S}}=\frac{1}{Q^{2}} R_{\mathrm{P}}=\frac{1}{80^{2}} 5027 \approx 0,8 \Omega
\end{aligned}
$$

Example, parallel circuit

Parallel circuit.

$$
\begin{aligned}
& C=25 \mathrm{nF} \\
& f_{0}=100 \mathrm{kHz} \\
& B W=1250 \mathrm{~Hz} \\
& L=? r=? \\
& Q=\frac{f_{0}}{\Delta f}=\frac{100 \cdot 10^{3}}{1250}=80
\end{aligned}
$$

Sanswer with a series resistor!

$80>10$ justifying
counting with the ideal model.
$f_{0}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L=\frac{1}{\left(2 \pi f_{0}\right)^{2} C}=\frac{1}{\left(2 \pi \cdot 100 \cdot 10^{3}\right)^{2} \cdot 25 \cdot 10^{-9}}=0,1 \mathrm{mH}$
$Q=\frac{R_{\mathrm{P}}}{X_{\mathrm{L}}}=\frac{R_{\mathrm{P}}}{2 \pi f_{0} \cdot L} \Rightarrow R_{\mathrm{P}}=2 \pi f_{0} \cdot L \cdot Q=2 \pi \cdot 100 \cdot 10^{3} \cdot 0,1 \cdot 10^{-3} \cdot 80 \approx 5027 \Omega$
$r_{\mathrm{S}}=\frac{1}{Q^{2}} R_{\mathrm{P}}=\frac{1}{80^{2}} 5027 \approx 0,8 \Omega\left[\begin{array}{l}\begin{array}{l}\text { Luckily we did not have } \\ \text { to use this formula to } \\ \text { calculate the } L\end{array}\end{array} f_{0}=\frac{1}{2 \pi} \sqrt{\left(\frac{1}{(L C}-\frac{r^{2}}{L^{2}}\right)}\right.$
William Sandqvist william@kth.se

The inductive sensor is a rugged sensor type available in many types.

Cyclists who request green?

TO REQUEST

William Sandqvist william@kth.se

Sorry! The
Sensor does not work for all bicycles?

William Sandqvist william@kth.se

[^0]: Duane A. Bylund

[^1]: William Sandqvist william@kth.se

