Digital or Analog

William Sandqvist william@kth.se

Digital→Analog converter?

 $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$

• Binary coded resistor values

Digital→Analog converter?

Problems with tolerances Binary coded resistors for 8 bit.

Biggest resistor *exactly* **100000** Ω and smallest resistor *exactly* **781** Ω (preferably 781,25)?

- It is difficult to manufacture such various resistors with tight tolerances.
 - There is a better solution!

R2R- method.

Just one resistance value needs to be manufactured, *R*, and then R+R=2R. One must be able to produce many "equal" resistors - the exact value is no longer important.

Two-terminal equivalent $R_{\rm I}$

The R2R-ladder is not that easy to understand ...

Repeated use of two-terminal equivalents and the superposition rule is what is required.

R-2R $b_0 = 0 R_I = ?$

R-2R $b_0 = 1 R_I = ?$

R-2R $b_1 = 0 R_I = ?$

R-2R $b_1 = 1 R_I = ?$

internal resistance!

Two-terminal equivalent E_0

R-2R $b_4=1$ $E_0=?$

R-2R
$$b_4 = 1 E_0 = ?$$

Volage divider:

$$E_0 = E \frac{2}{2+2} = \frac{E}{2}$$

R-2R $b_3=1$ $E_0=?$

• Reasonable guess – is it not?

• According to the **superposition** principle, the contributions of $b_4 b_3 b_2 \dots b_0$ can be added individually: $b_4 b_3 b_2 b_1 b_0 \implies E_0 = E \cdot \left(\frac{b_4}{2} + \frac{b_3}{4} + \frac{b_2}{8} + \frac{b_1}{16} + \frac{b_0}{32}\right)$ *We have a DA-converter!*

William Sandqvist william@kth.se

R-2R simulation

Guess value of voltage OUT?

AD-converter?

Successive approximations

AD conversion according to the method of successive approximations is comparable to weigh an unknown mass with binary weights on a balance. We try step by step to adding binary "weight" if "<" or remove " weight" if ">".

An AD-converter, 14 channels

Supply voltage as reference

Internal or external reference?

Stabilized reference 4,096 V

If you buy a stabilized reference circuit you can perhaps choose the value 4,096 V ($4096=2^{12}$) which gives a 10-bit ADconverter exact 4 mV-steps, *without* the need to scale the measured result with multiplications and divisions.

Ratiometric connection

If a sensor measurement value depends on it's supply voltage, you can either have stabilized supply (expensive) – or easier, use so-called ratiometric connection. If the sensor supply voltage and AD converter reference voltage **are the same**, then changes in this voltage will be the same for both, and the AD converted measured value will remain intact!

Adapt measuring range

An NTC thermistor has a high sensitivity but a non-linear temperature relationship.

One linearize with a resistor – and then get the measuring range $0 \dots 3,5$ V. If the reference is 3,5 V instead of 5 V then one utilizes the entire ADC range for the measurement.

Are 10-bit resolution required?

 $b_9 b_8 b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$

AD converter is 10 bits. What does a sensor cost that has 10-bit resolution?

More common is that you can afford an 8-bit sensor. (PIC processor itself costs 2 \$).

The picture shows a resistive position sensor that can take advantage of 10-bit resolution.

8-bit program

If one need only 8 bit resolution one can ignore the two least significant bits and handle the result as a byte.

char value; value = ADRESH; /* 8-bit measurement */

Avoid amplifier

If one only need 8 bit resolution one can still use the 10-bit resolution to avoid the need to amplify the sensor signal, the two most significant bits becomes constant. One can therefore ignore to read them.

8-bit program (10 bit)

ADFM=0; char value; value = ADRESL; /* 8-bit measurement */

16-bit program

What happens if the signal changes during conversion?

The result is a value that has occurred during the conversion, but at an unspecified time!

Sample & Hold - circuit

The course PIC processor, the sampling capacitor has capacitance $\approx 10 \text{pF}$.

Acquisition time t_{ACQ}

Every time one has **chosen/changed channel** the **sampling capacitor** C_{HOLD} must have time to recharge to the analog voltage. This will take about 5 μ s.

nop2(); nop2(); nop(); /* 5 us 4 MHz clock */;

AD-clock pulses

AD-converter can use a maximum clock frequency of 250 kHz. If the PIC processorn clock is **4 MHz** this must firs be divided 16 times before it can be used as AD-clock. This frequency divider is provided.

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	ADCS2	ADCS1	ADCS0	—	—	—	—
bit 7							bit 0

ADCS<2:0>: A/D Conversion Clock Select bits

- 000 = Fosc/2
- 001 = Fosc/8
- 010 = Fosc/32

x11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max)

100 = Fosc/4 101 = Fosc/16

110 = FOSC/64

$$1010000_2 = 80_{10}$$
 $T_{AD} = 4\mu s$ $f_{AD} = 500 \text{kHz}$

Start AD and wait for done

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

AD-conversion takes time

FIGURE 9-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

The conversion takes approximately 2 + 11 AD clock pulses. If one ignores the fact that the PIC processor must do something (?) With the AD-converted value (which also takes time), then the theoretically maximum sampling rate becomes:

$$f_{S\max} = \frac{1}{52\,\mu s} = 19,2\,\mathrm{kHz}$$

AD-conversion takes time

If one converts alternating two channels (stereo?) then there will also be the setting time of sampling capacitor $T_{ACQ} = 5$ µs.

$$f_{s \max} = \frac{1}{52 + 5 + 52 + 5 \,[\,\mu s\,]} = 8,8 \,\mathrm{kHz}$$

The PIC processor can handle most industrial control processes - but it is of course totally inadequate as a "signal processor" for sound effects!

Many setup possibilities

TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
ADCON1	_	ADCS2	ADCS1	ADCS0		_	_	_	-000	-000
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
ANSELH	—	_	_	_	ANS11	ANS10	ANS9	ANS8	1111	1111
ADRESH	SH A/D Result Register High Byte									uuuu uuuu
ADRESL	A/D Result Register Low Byte								xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	TOIE	INTE	RABIE	TOIF	INTF	RABIF	0000 000x	0000 000x
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
PORTB	RB7	RB6	RB5	RB4	_	—	—	_	xxxx	uuuu
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	—	1111	1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module.

AD-conversion – step by step

1. Configure Port:

- Disable pin output driver (See TRIS register)
- Configure pin as analog (See ANSEL register).
- 2. Configure the ADC module:
 - Select ADC conversion clock (ADCON1, ADCS<2:0>).
 - Configure voltage reference (ADCON0, VCFG).
 - Select ADC input channel (ADCON0, CHS<3:0>).
 - Select result format (ADCON0, ADFM).
 - Turn on ADC module (ADCON0, ADON)
- 3. Start conversion set the GO/DONE bit. (ADCON0, GO)
- 4. Wait for ADC conversion to complete, polling the GO/DONE bit. (ADCON0, GO)
- 5. Read ADC Result (ADRESH, ADRESL)