IE1206 Embedded Electronics

Two port circuits - Black box

black box

$?$

$$
=
$$

William Sandqvist william@kth.se

The power supply

VOLTAGE

 knob to set the constant voltage. Coarse and firie adjustments.+ and - poles (GND is to connect the metal casing to $+/-$ to suppress interference).

William Sandqvist william@kth.se

The power supply

CURRENT

 knob to set the current limit. Coarse and fine adjustments.C.C. Continuous Current. Led indicating that the unit operates as a current generator.

To set the current limit you show
"Amps" and then short voltage poles.
The/set current then
becomes the
maximum current
that can occur.

William Sandqvist william@kth.se

Voltage and Current generator

(Ex. 8.1) What value will the U get in these idealized and usually unrealistic circuits?

Voltage and Current generator

(Ex. 8.1) What value will the U get in these idealized and usually unrealistic circuits?

William Sandqvist william@kth.se

Voltage and Current generator

(Ex. 8.1) What value will the U get in these idealized and usually unrealistic circuits?

William Sandqvist william@kth.se

Simplify ... (8.2)

William Sandqvist william@kth.se

Simplify ... (8.2)

$$
\begin{aligned}
& 7-10=-3 \\
& \frac{3 \cdot 6}{3+6}=2
\end{aligned}
$$

William Sandqvist william@kth.se

Simplify ... (8.2)

$$
\begin{aligned}
& 7-10=-3 \\
& \frac{3 \cdot 6}{3+6}=2
\end{aligned}
$$

William Sandqvist william@kth.se

Equvalents step by step ...

(8.4) Electronics prefix $[\mathrm{V}][\mathrm{k} \Omega][\mathrm{mA}]$

Equvalents step by step ...

(8.4) Electronics prefix $[\mathrm{V}][\mathrm{k} \Omega][\mathrm{mA}]$

William Sandqvist william@kth.se

Equivalents step by step ...

(8.4) Electronics prefix $[\mathrm{V}][\mathrm{k} \Omega][\mathrm{mA}]$

William Sandqvist william@kth.se

Equvalents step by step ...

(8.4) Electronics prefix $[\mathrm{V}][\mathrm{k} \Omega][\mathrm{mA}]$

William Sandqvist william@kth.se

At last ...

Voltage divider:

$$
U=6,67 \cdot \frac{0,5}{0,5+1,73}=1,49 \mathrm{~V}
$$

(Wheatstone bridge equivalent)

Determine the Wheatstone bridge Thevenin equivalent.

(Determine R_{\mid})

$$
R_{\mathrm{I}}=\frac{6 \cdot 3}{6+3}+\frac{12 \cdot 4}{12+4}=5 \Omega
$$

(Determine E_{0})

$$
\begin{aligned}
& U_{1}=72 \cdot \frac{6}{6+3}=48 \\
& U_{2}=72 \cdot \frac{12}{12+4}=54 \\
& E_{0}=54-48=6 \mathrm{~V}
\end{aligned}
$$

William Sandqvist william@kth.se

(Determine $R_{1} E_{0}$)

$$
\begin{gathered}
U_{1}=72 \cdot \frac{6}{6+3}=48 \\
U_{2}=72 \cdot \frac{12}{12+4}=54 \\
E_{0}=54-48=6 \mathrm{~V} \\
\text { Done! }
\end{gathered}
$$

William Sandqvist william@kth.se

Equivalent circuits (instead of mesh analysis)!

William Sandqvist william@kth.se

Equivalent circuits (instead of mesh analysis)!

William Sandqvist william@kth.se

Equivalent circuits (instead of mesh analysis)!

William Sandqvist william@kth.se

Equivalent circuits (instead of mesh analysis)!

William Sandqvist william@kth.se

Ex. current generator at node analysis

(7.2)

$$
\begin{aligned}
& -I_{1}-I_{2}+1=0 \quad I_{1}+I_{2}=1 \\
& I_{2}=\frac{U}{R_{2}}=\frac{U}{12} \\
& I_{1}=\frac{U-E}{R_{1}}=\frac{U-24}{6} \\
& 1=\frac{U}{12}+\frac{U-24}{6}=\frac{2 \cdot U-48+U}{12} \Leftrightarrow 12=3 \cdot U-48 \\
& U=20 \mathrm{~V}
\end{aligned}
$$

Node analysis - the currents

$$
\begin{aligned}
& I_{2}=\frac{20}{12}=1,67 \\
& I_{1}=\frac{20-24}{6}=-0,67 \\
& I_{1}+I_{2}=1 \Rightarrow-0,67+1,67=1
\end{aligned}
$$

Example (8.9)

a) Derive a Thevenin's equivalent, $E_{0} R_{\mathrm{I}}$, to the circuit with the two current sources.
b) Calculate how big the current I would be if you connected a resistor R_{4} $=2 \mathrm{k} \Omega$ to the circuit (or it's equivalent).

Example (8.9)

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Example (8.10)

a) Derive a Thevenin's equivalent, $E_{0} R_{\mathrm{I}}$, to the circuit with the two voltage sources and the three resistors.
b) How big is the voltage drop U_{AB} over $1 \mathrm{k} \Omega$ resistor in the original circuit?

Example (8.10)

Let's calculate the voltage drop U_{AB} over the $1 \mathrm{k} \Omega$ resistor in the circuit, from the Thevenin's equivalent, as then U_{AB} will be the same as the E_{0} !

R_{I} is the equivalent resistance when the both voltage sources are turned down to zero:

$$
R_{I}=\frac{1}{\frac{1}{1 \mathrm{k} \Omega}+\frac{1}{1 \mathrm{k} \Omega}+\frac{1}{1 \mathrm{k} \Omega}}=\frac{1}{3} \mathrm{k} \Omega
$$

Suppose A and B short circuited. The third $1 \mathrm{k} \Omega$ resistor will then be without current and can be ignored. The short cicuit current will come from the two votage sources through their $1 \mathrm{k} \Omega$ resistors:

$$
I_{K}=\frac{12 \mathrm{~V}}{1 \mathrm{k} \Omega}+\frac{6 \mathrm{~V}}{1 \mathrm{k} \Omega}=18 \mathrm{~mA}
$$

Example (8.10)

The Thevenin equivalent will have the same short circuit current $I_{\mathrm{K}}=18 \mathrm{~mA}$. This makes it easy to calculate E_{0} :

$$
I_{K}=\frac{E_{0}}{R_{I}} \Rightarrow E_{0}=I_{K} \cdot R_{I}=18 \cdot \frac{1}{3}=6 \mathrm{~V}
$$

And the voltage drop U_{AB} is the same $E_{0 .} \quad U_{\mathrm{AB}}=6 \mathrm{~V}$.

William Sandqvist william@kth.se

Example (8.11)

a) Derive a Thevenin's equivalent, $E_{0} R_{\mathrm{I}}$, to the circuit with the voltage source and the current source and the three resistors. (The $6 \mathrm{k} \Omega$ resistor is not includes in the circuit).
b) Calculate how big current I would flow in a resistor $R=6 \mathrm{k} \Omega$ connected to A-B? What direction will the current have?

Example (8.11)

The current source with the $1 \mathrm{k} \Omega$ resistor can be transformed to a voltage source. The circuit then becomes a 1 V voltage source with a voltage divider.

$$
E_{0}=1 \frac{2}{3+2}=0,4 \mathrm{~V} \quad R_{I}=\frac{3 \cdot 2}{3+2}=1,2 \mathrm{k} \Omega
$$

The open circuit voltage is $0,4 \mathrm{~V}$, and the internal resistance $3 \mathrm{k} \Omega \| 2 \mathrm{k} \Omega=1,2 \mathrm{k} \Omega$. Note. The voltage source $0,4 \mathrm{~V}$ is opposite to the definition of the figure.

William Sandqvist william@kth.se

