IE1206 Embedded Electronics

William Sandqvist william@kth.se

Complex phasors, $\mathrm{j} \omega$-method

- Complex OHM's law for $R L$ and C.

$$
\begin{aligned}
& \underline{U}_{\mathrm{R}}=\underline{I}_{\mathrm{R}} \cdot R \\
& \underline{U}_{\mathrm{L}}=\underline{I}_{\mathrm{L}} \cdot \mathrm{j} X_{\mathrm{L}}=\underline{I}_{\mathrm{L}} \cdot \mathrm{j} \omega L \\
& \underline{U}_{\mathrm{C}}=\underline{I}_{\mathrm{C}} \cdot \mathrm{j} X_{\mathrm{C}}=\underline{I}_{\mathrm{C}} \cdot \frac{1}{\mathrm{j} \omega C}
\end{aligned} \quad \omega=2 \pi \cdot f
$$

- Complex OHM’s law for Z.

$$
\underline{U}=\underline{I} \cdot \underline{Z} \quad Z=\frac{U}{I} \quad \varphi=\arg (\underline{Z})=\arctan \left(\frac{\operatorname{Im}[\underline{Z}]}{\operatorname{Re}[\underline{Z}]}\right)
$$

Voltage divider, Transfer function

Simple filters are often designed as a voltage dividers.A filter transfer function, $H(\omega)$ or $H(f)$, is the ratio between output voltage and input voltage. This ratio we get directly from the voltage divider formula!

LP HP BP BS

BP and BS filters can be seen as different combination of LP and HP filters.

William Sandqvist william@kth.se

Transfer function (14.2)

a) Set up an expression of $I_{\mathrm{C}}=f(U, \omega, R, C)$.
b) Set up the transfer function I_{C} / U the amount function and the phase function.
c) What filter type is the transfer function, LP HP BP BS ?
d) What break frequency has the transfer function?

Transfer function (14.2)

Answer a)

$$
\begin{aligned}
& R \| C=\frac{R \cdot \frac{1}{\mathrm{j} \omega C}}{R+\frac{1}{\mathrm{j} \omega C}} \cdot \frac{\mathrm{j} \omega C}{\mathrm{j} \omega C}=\frac{R}{1+\mathrm{j} \omega R C} \\
& \underline{I}_{C}=\frac{\underline{U}_{C}}{\frac{1}{\mathrm{j} \omega C}}=\underline{U}_{C} \cdot \mathrm{j} \omega C
\end{aligned}
$$

Transfer function (14.2)

$$
\begin{aligned}
& \underline{U}_{\mathrm{C}}=\underline{U} \frac{\frac{R}{1+\mathrm{j} \omega R C}}{R+\frac{R}{1+\mathrm{j} \omega R C}} \cdot \frac{\frac{1+\mathrm{j} \omega R C}{R}}{\frac{1+\mathrm{j} \omega R C}{R}}=\underline{U} \frac{1}{1+\mathrm{j} \omega R C+1} \Rightarrow \\
& \underline{I}_{C}=\underline{U} \frac{\mathrm{j} \omega C}{2+\mathrm{j} \omega R C}
\end{aligned}
$$

William Sandqvist william@kth.se

Transfer function (14.2)

Answer b) $\quad I_{\mathrm{C}} / U$

$$
\begin{aligned}
& \frac{\underline{I}_{C}}{\underline{U}}=\frac{\mathrm{j} \omega C}{2+\mathrm{j} \omega R C} \frac{I_{C}}{U}=\frac{\omega C}{\sqrt{4+(\omega R C)^{2}}} \\
& \arg \left(\frac{\underline{I}_{C}}{\underline{U}}\right)=\arctan \left(\frac{2}{\omega R C}\right)
\end{aligned}
$$

Transfer function (14.2)

Answer c) LP HP BP BS?

$$
\frac{\underline{I}_{C}}{\underline{U}}=\frac{\mathrm{j} \omega C}{2+\mathrm{j} \omega R C}
$$

$$
\frac{\underline{I}_{C}}{\underline{U}}\{\omega=0\}=\frac{0 \cdot j}{2+0 \cdot j}=0 \quad \frac{\underline{I}_{C}}{\underline{U}}\{\omega=\infty\}=\frac{1}{R}
$$

$$
\Rightarrow \quad \mathrm{HP} \quad \dot{u}_{-0-\infty}^{\sim} \underset{\sim}{x} \mathbb{I}_{I_{C}}
$$

William Sandqvist william@kth.se

Transfer function (14.2)

Answer d) Break frequency?
At the break frequency the numerator real part and imaginary part are equal.

$$
\begin{gathered}
\frac{\underline{I}_{C}}{\underline{U}}=\frac{\mathrm{j} \omega C}{2+\mathrm{j} \omega R C} \quad \omega R C=2 \Rightarrow f_{G}=\frac{1}{2 \pi} \cdot \frac{2}{R C} \\
\frac{\underline{I}_{C}}{\underline{U}}=\frac{\mathrm{j} \omega C}{2+\mathrm{j} \omega R C}=\frac{\mathrm{j} \frac{2}{\mathrm{R}}}{2+\mathrm{j} 2} \Rightarrow \frac{I_{C}}{U}=\frac{\frac{2}{R}}{\sqrt{2^{2}+2^{2}}}=\frac{1}{R \cdot \sqrt{2}}
\end{gathered}
$$

William Sandqvist william@kth.se

Phasor - vector

$$
\omega=2 \pi f \quad\left|X_{L}\right|=\omega \cdot L \quad\left|X_{C}\right|=\frac{1}{\omega \cdot C}
$$

$$
Z=\frac{U}{I}
$$

Phasor chart for voltage divider (11.8)

The figure shows a voltage divider. It is connected to an AC voltage source U_{1} and it's output voltage is U_{2}. At a some frequency the reactance of the inductor is $X_{\mathrm{L}}=2 \mathrm{R}$.
Draw the phasor chart of this circuit with
I_{1}, U_{1} and U_{2} at this frequency.
Use I_{1} as reference phase (= horizontal).

Phasor chart for voltage divider (11.8)

$\mathrm{j} \omega$-calculation of the divided voltage

$$
\begin{aligned}
& \frac{U_{2}}{\underline{U}_{1}}=\frac{R+\mathrm{j} \omega L}{4 R+\mathrm{j} \omega L} \quad \frac{U_{2}}{U_{1}}=\frac{\sqrt{R^{2}+(\omega L)^{2}}}{\sqrt{16 R^{2}+(\omega L)^{2}}} \\
& X_{L}=\omega L=2 R \Rightarrow \\
& \frac{U_{2}}{U_{1}}=\frac{\sqrt{R^{2}+(2 R)^{2}}}{\sqrt{16 R^{2}+(2 R)^{2}}}=\frac{\sqrt{5}}{\sqrt{20}}=\frac{1}{2}
\end{aligned}
$$

Here are some more "filters" if time permits!

William Sandqvist william@kth.se

Filter RLR (14.7)

The figure shows a simple filter with two R and one L.
a) Derive the filter complex transfer function $\underline{U}_{2} / \underline{U}_{1}$.
b) At what angle frequency ω_{x} will the amount function be $\left|\underline{U}_{2}\right| /\left|\underline{U}_{1}\right|=1 / \sqrt{2}$
Give an expresson for this frequency ω_{X} with $R L$.

c) What value has the amount of the transfer function at very low frequencys, $\omega \approx 0$?

What value has the phase function at very low frequencys?
d) What value has the amount of the transfer function at very high frequencys, $\omega \approx \infty$?

What value has the phase function at very high frequencys?

$$
\begin{aligned}
& \text { a) } \frac{\underline{U}_{2}}{\underline{U}_{1}}=? \quad \text { b) } \omega_{X} \Rightarrow\left|\frac{\underline{U_{2}}}{\underline{U}_{1}}\right|=\frac{1}{\sqrt{2}} \quad \omega_{X}(R, L)=? \quad \text { c) } \omega \approx 0 \Rightarrow\left|\frac{\underline{U}_{2}}{\underline{U}_{1}}\right|=? \quad \arg \left(\frac{\underline{U}_{2}}{\underline{U}_{1}}\right)=\text { ? } \\
& \text { d) } \omega \approx \infty \Rightarrow\left|\frac{\underline{U}_{2}}{\underline{U}_{1}}\right|=? \quad \arg \left(\frac{\underline{U_{2}}}{\underline{U}_{1}}\right)=?
\end{aligned}
$$

Filter RLR (14.7)

a) $R \| L=\frac{R \cdot j \omega L}{R+j \omega L} \quad \frac{\underline{U}_{2}}{\underline{U}_{1}}=\frac{R}{R+\frac{R \cdot j \omega L}{R+j \omega L}}=\frac{1}{1+\frac{1 \cdot j \omega L}{R+j \omega L}}=\frac{\frac{R+j \omega L}{R+j \omega L}}{\frac{R+j \omega L+j \omega L}{R+j \omega L}}=\frac{R+j \omega L}{R+j 2 \omega L}$
b) $\left.\quad\left|\frac{\underline{U_{U}}}{\underline{U_{1}}}\right|=\left|\frac{R+j \omega L}{R+j 2 \omega L}\right|=\frac{1}{\sqrt{2}} \quad \frac{\sqrt{R^{2}+(\omega L)^{2}}}{\sqrt{R^{2}+(2 \omega L)^{2}}}=\frac{1}{\sqrt{2}} \quad 2 R^{2}+2(\omega L)^{2}\right)=R^{2}+4(\omega L)^{2}$

$$
R^{2}=2(\omega L)^{2} \Rightarrow \omega_{X}=\frac{R}{L \sqrt{2}}
$$

c) $\frac{R+j \omega L}{R+j 2 \omega L} \quad \omega \rightarrow 0 \quad \frac{R+0}{R+0}=1 \Rightarrow\left|\frac{\underline{U}_{2}}{\underline{U}_{1}}\right|=1 \quad \arg \left(\frac{\underline{U}_{2}}{\underline{U}_{1}}\right)=0^{\circ}$
d) $\frac{R+j \omega L}{R+j 2 \omega L} \Rightarrow \frac{\frac{R}{\omega}+j L}{\frac{R}{\omega}+j 2 L} \quad \omega \rightarrow \infty \quad \frac{0+j L}{0+j 2 L}=\frac{1}{2} \Rightarrow\left|\frac{\underline{U}_{2}}{\underline{U}_{1}}\right|=0,5 \quad \arg \left(\frac{\underline{U}_{2}}{\underline{U}_{1}}\right)=0^{\circ}$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Filter LCR if time ... (14.8)

The figure shows a simple filter with $L C$ and R.
a) Derive the filter transfer function $\underline{U}_{2} / \underline{U}_{1}$.
b) At what angular frequency ω_{x} will the denominator be purely imaginary? Give an expression of this frequency ω_{x} with $R L$ and C.

c) What value has the amount function at this angular frequency, ω_{x} ?
d) What value has the phase function at this angular frequency, ω_{x} ?
e) Give an expression of the transfer function between $\underline{I}_{R} / \underline{U}_{1}$
(Note! You already have the transferfunction $\underline{U}_{2} / \underline{U}_{1}$ from a)
a) $\frac{\underline{U_{2}(\omega)}}{\underline{U}_{1}(\omega)}=$?
b) $\omega_{X}(R, L, C)=$?
c) $\left|\frac{\underline{U}_{2}\left(\omega_{X}\right)}{\underline{U}_{1}\left(\omega_{X}\right)}\right|=$?
d) $\arg \left(\frac{\underline{U}_{2}\left(\omega_{X}\right)}{\underline{U}_{1}\left(\omega_{X}\right)}\right)=$?
e) $\frac{\underline{I}_{R}(\omega)}{\underline{U}_{1}(\omega)}=$?

Filter LCR if time ... (14.8)

a)b) $\quad R \| C=\frac{R \cdot \frac{1}{j \omega C}}{R+\frac{1}{j \omega C}} \cdot \frac{j \omega C}{j \omega C}=\frac{R}{1+j \omega R C}$
$\frac{\underline{U_{2}}}{\underline{U}_{1}}=\frac{\frac{R}{1+j \omega R C}}{j \omega L+\frac{R}{1+j \omega R C}} \cdot \frac{1+j \omega R C}{1+j \omega R C}=\frac{R}{j \omega L(1+j \omega R C)+R}=$
$=\frac{R}{\left(R-\omega^{2} R L C\right)+j \omega L} \quad R E\left[\frac{\underline{U_{2}}}{\underline{\underline{U}_{1}}}\right]=0 \quad \Rightarrow \quad \omega^{2} R L C=R \quad \omega=\frac{1}{\sqrt{L C}}$
c) $\frac{\underline{U}_{2}}{\underline{U}_{1}}=\frac{R}{\left(R-\omega^{2} R L C\right)+j \omega L}=\left\{\omega=\frac{1}{\sqrt{L C}}\right\}=\frac{R}{0+j \sqrt{\frac{L}{C}}} \frac{U_{2}}{U_{1}}=\frac{R}{\sqrt{\frac{L}{C}}}=R \sqrt{\frac{C}{L}}$
d) $\arg \left[\frac{\underline{U}_{2}}{\underline{U}_{1}}\right]=\arg \left[\frac{R}{j \sqrt{\frac{L}{C}}}\right]=-90^{\circ}$
e) $\frac{\underline{I_{R}}}{\underline{U}_{1}}=$? $\quad \underline{I}_{R}=\frac{\underline{U_{2}}}{R} \Rightarrow \quad \frac{\underline{I}_{R}}{\underline{U}_{1}}=\frac{\underline{U_{2}}}{\underline{U}_{1}} \cdot \frac{1}{R}=\frac{1}{\left(R-\omega^{2} R L C\right)+j \omega L}$

William Sandqvist william@kth.se

Voltage ratio

Current ratio

$$
\begin{aligned}
& P_{1}=P_{2} \quad\left(P_{0}, I_{0}=0\right) \\
& U_{1} \cdot I_{1}=U_{2} \cdot I_{2} \quad \Rightarrow \\
& \frac{I_{2}}{I_{1}} \approx \frac{U_{1}}{U_{2}}=\frac{N_{1}}{N_{2}}
\end{aligned}
$$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Two values are missing? (15.1)

For a transformer the following data was given:

Primary			Secondary		
N_{1}	U_{1}	I_{1}	N_{2}	U_{2}	I_{2}
600	225 V	$?$	200	$?$	9 A

Calculate the two values that are missing. I_{1} and U_{2}.

Two values are missing! (15.1)

For a transformer the following data was given:

Primary				Secondary		
N_{1}	U_{1}	I_{1}	N_{2}	U_{2}	I_{2}	
600	225 V	3 A	200	75 V	9 A	

Calculate the two values that are missing. I_{1} and U_{2}.

$$
\begin{gathered}
n=N_{1} / N_{2}=600 / 200=3 \\
I_{1}=\frac{1}{n} I_{2}=\frac{9}{3}=3 \quad U_{2}=\frac{1}{n} U_{1}=\frac{225}{3}=75
\end{gathered}
$$

Two values are missing? (15.2)

For a transformer the following data was given:

Primary				Secondary		
N_{1}	U_{1}	I_{1}	N_{2}	U_{2}	I_{2}	
$?$	230 V	2 A	150	$?$	12 A	

Calculate the two values that are missing. N_{1} and U_{2}.

Two values are missing! (15.2)

For a transformer the following data was given:

Primary				Secondary		
N_{1}	U_{1}	I_{1}	N_{2}	U_{2}	I_{2}	
900	230 V	2 A	150	38 V	12 A	

Calculate the two values that are missing. N_{1} and U_{2}.

$$
\begin{gathered}
n=I_{2} / I_{1}=12 / 2=6 \\
N_{1}=N_{2} \cdot n=150 \cdot 6=900 \quad U_{2}=U_{1} / n=230 / 6=38,3 \mathrm{~V}
\end{gathered}
$$

Two values are missing? (15.3)

For a transformer the following data was given:

Primary				Secondary		
N_{1}	U_{1}	I_{1}	N_{2}	U_{2}	I_{2}	
600	225 V	$\boldsymbol{?}$	$\boldsymbol{?}$	127 V	9 A	

Calculate the two values that are missing. I_{1} and N_{2}.

Two values are missing! (15.3)

For a transformer the following data was given:

Primary			Secondary		
N_{1}	U_{1}	I_{1}	N_{2}	U_{2}	I_{2}
600	225 V	5 A	339	127 V	9 A

Calculate the two values that are missing. I_{1} and N_{2}.

$$
\begin{gathered}
\frac{U_{1}}{U_{2}}=\frac{N_{1}}{N_{2}}=\frac{225}{127}=1,77 \Rightarrow N_{2}=\frac{U_{2}}{U_{1}} N_{1}=\frac{600 \cdot 127}{225}=339 \\
I_{1}=\frac{N_{2}}{N_{1}} I_{2}=\frac{339}{600} 9=5,08 \mathrm{~A}
\end{gathered}
$$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Inductive coupling

The coupling factor indicates how much of its flow a coil has in common with another coil? An ideal transformer has the coupling factor $k=1$ (100\%)

$$
k=\frac{M}{\sqrt{L_{1} L_{2}}}
$$

$\pm M$ is called mutal inductance

- Series connected coils

$$
L_{\text {TOT }}=L_{1}+L_{2}+2 M
$$

- Parallel connected coils

$$
L_{\text {TOT }}=\frac{L_{1} \cdot L_{2}-M^{2}}{L_{1}+L_{2}-2 M}
$$

$$
L_{T O T}=\frac{L_{1} \cdot L_{2}-M^{2}}{L_{1}+L_{2}+2 M}
$$

Mutal inductance (15.8)

Three inductors $L_{1}=12, L_{2}=6, L_{3}=5[\mathrm{H}]$ are series connected. When inductors are close to each other the placement on the circuit board can be important. In the

b)
 figure to the left a) will inductors to have a portion of the magnetic lines in common. They then have the mutual inductances $\mathrm{M}_{12}=3, M_{23}=1, M_{13}=1[\mathrm{H}]$.
In the figure to the right b) the inductors are mounted three dimensional so that there are no shared power magnetic lines.
a) Calculate the total inductance for the arrangement in figure a). $L_{\text {TOT }}=$?
b) Calculate the total inductance for the arrangement in figure b). $L_{\mathrm{TOT}}=$?

Mutal inductance (15.8)

a) $\quad L_{\text {тот }}=L_{1}-M_{12}+M_{13}+$

$$
\begin{aligned}
& L_{2}-M_{12}-M_{23}+ \\
& L_{3}-M_{23}+M_{13}= \\
& =12-3+1+6-3-2+5-1+1=16[\mathrm{H}]
\end{aligned}
$$

b)
b) $L_{\text {тот }}=L_{1}+L_{2}+L_{3}=12+6+5=23[\mathrm{H}]$

William Sandqvist william@kth.se

