IE1206 Embedded Electronics

Complex phasors, $j\omega$ -method

• Complex OHM's law for R L and C.

$$\underline{U}_{R} = \underline{I}_{R} \cdot R$$

$$\underline{U}_{L} = \underline{I}_{L} \cdot j X_{L} = \underline{I}_{L} \cdot j \omega L$$

$$\underline{U}_{C} = \underline{I}_{C} \cdot j X_{C} = \underline{I}_{C} \cdot \frac{1}{j \omega C}$$

$$\omega = 2\pi \cdot f$$

• Complex OHM's law for *Z*.

$$\underline{\underline{U}} = \underline{I} \cdot \underline{\underline{Z}} \qquad Z = \frac{\underline{U}}{\underline{I}} \qquad \qquad \varphi = \arg(\underline{Z}) = \arctan\left(\frac{\operatorname{Im}[\underline{Z}]}{\operatorname{Re}[\underline{Z}]}\right)$$

Voltage divider, Transfer function

Simple filters are often designed as a voltage dividers. A filter **transfer function**, $H(\omega)$ or H(f), is the ratio between output voltage and input voltage. This ratio we get directly from the voltage divider formula!

LP HP BP BS

BP and BS filters can be seen as different combination of LP and HP filters.

- a) Set up an expression of $I_{\rm C} = f(U, \omega, R, C)$.
- b) Set up the transfer function $I_{\rm C}/U$ the **amount** function and the **phase function**.
- c) What filter type is the transfer function, LP HP BP BS ?
- d) What break frequency has the transfer function?

Answer a)

Answer b) $I_{\rm C}/U$

$$\frac{\underline{I}_{C}}{\underline{U}} = \frac{j\omega C}{2 + j\omega RC} \quad \frac{I_{C}}{U} = \frac{\omega C}{\sqrt{4 + (\omega RC)^{2}}} \quad \arg\left(\frac{\underline{I}_{C}}{\underline{U}}\right) = 90^{\circ} - \arctan\left(\frac{\omega RC}{2}\right)$$
$$\arg\left(\frac{\underline{I}_{C}}{\underline{U}}\right) = \arctan\left(\frac{2}{\omega RC}\right)$$

$$\frac{\underline{I}_{C}}{\underline{U}} = \frac{j\omega C}{2 + j\omega RC}$$

$$\frac{\underline{I}_{C}}{\underline{U}}\left\{\omega=0\right\} = \frac{0 \cdot j}{2+0 \cdot j} = 0 \quad \frac{\underline{I}_{C}}{\underline{U}}\left\{\omega=\infty\right\} = \frac{1}{R}$$

Answer d) Break frequency?

At the break frequency the numerator real part and imaginary part are equal.

 $\frac{\underline{I}_{C}}{\underline{U}} = \frac{j\omega C}{2 + j\omega RC} \qquad \omega RC = 2 \quad \Rightarrow \qquad f_{G} = \frac{1}{2\pi} \cdot \frac{2}{RC}$ $\frac{\underline{I}_{C}}{\underline{U}} = \frac{j\omega C}{2 + j\omega RC} = \frac{j\frac{2}{R}}{2 + j2} \quad \Rightarrow \quad \frac{I_{C}}{U} = \frac{\frac{2}{R}}{\sqrt{2^{2} + 2^{2}}} = \frac{1}{R \cdot \sqrt{2}}$

William Sandqvist william@kth.se

Phasor - vector

Phasor chart for voltage divider (11.8)

The figure shows a voltage divider. It is connected to an AC voltage source U_1 and it's output voltage is U_2 . At a some frequency the reactance of the inductor is $X_L = 2R$.

Draw the phasor chart of this circuit with I_1 , U_1 and U_2 at this frequency.

Use I_1 as reference phase (= horizontal).

Phasor chart for voltage divider (11.8)

$j\omega$ -calculation of the divided voltage

Here are some more "filters" if time permits!

Filter RLR (14.7)

R

R

The figure shows a simple filter with two R and one L.

- a) Derive the filter complex transfer function $\underline{U}_2/\underline{U}_1$.
- b) At what angle frequency ω_X will the amount function be $|\underline{U}_2|/|\underline{U}_1|=1/\sqrt{2}$

Give an expresson for this frequency ω_X with RL.

c) What value has the amount of the transfer function at very low frequencys, $\omega \approx 0$? What value has the phase function at very low frequencys?

d) What value has the amount of the transfer function at very high frequencys, $\omega \approx \infty$? What value has the phase function at very high frequencys?

$$a) \frac{\underline{U}_2}{\underline{U}_1} = ? \quad b) \ \omega_X \Rightarrow \quad \left| \frac{\underline{U}_2}{\underline{U}_1} \right| = \frac{1}{\sqrt{2}} \quad \omega_X(R,L) = ? \quad c) \ \omega \approx 0 \Rightarrow \quad \left| \frac{\underline{U}_2}{\underline{U}_1} \right| = ? \quad \arg\left(\frac{\underline{U}_2}{\underline{U}_1}\right) = ?$$
$$d) \ \omega \approx \infty \Rightarrow \quad \left| \frac{\underline{U}_2}{\underline{U}_1} \right| = ? \quad \arg\left(\frac{\underline{U}_2}{\underline{U}_1}\right) = ?$$

Filter RLR (14.7)

$$b) \qquad \left|\frac{\underline{U}_2}{\underline{U}_1}\right| = \left|\frac{R+j\omega L}{R+j2\omega L}\right| = \frac{1}{\sqrt{2}} \quad \frac{\sqrt{R^2 + (\omega L)^2}}{\sqrt{R^2 + (2\omega L)^2}} = \frac{1}{\sqrt{2}} \quad 2R^2 + 2(\omega L)^2) = R^2 + 4(\omega L)^2$$

$$R^2 = 2(\omega L)^2 \quad \Rightarrow \quad \omega_X = \frac{R}{L\sqrt{2}}$$

$$c) \qquad \frac{R+j\omega L}{R+j2\omega L} \quad \omega \to 0 \quad \frac{R+0}{R+0} = 1 \quad \Rightarrow \quad \left|\frac{\underline{U}_2}{\underline{U}_1}\right| = 1 \quad \arg\left(\frac{\underline{U}_2}{\underline{U}_1}\right) = 0^\circ$$

$$d) \qquad \frac{R+j\omega L}{R+j2\omega L} \quad \Rightarrow \quad \frac{\frac{R}{\omega}+jL}{\frac{R}{\omega}+j2L} \quad \omega \to \infty \quad \frac{0+jL}{0+j2L} = \frac{1}{2} \quad \Rightarrow \quad \left|\frac{\underline{U}_2}{\underline{U}_1}\right| = 0.5 \quad \arg\left(\frac{\underline{U}_2}{\underline{U}_1}\right) = 0^{\circ}$$

$$U_1 \qquad U_2 \qquad U_2$$

R

Filter LCR if time ... (14.8)

The figure shows a simple filter with *L C* and *R*.
a) Derive the filter transfer function <u>U₂/U₁</u>.
b) At what angular frequency ω_x will the denominator be purely imaginary? Give an expression of this frequency ω_x with *R L* and *C*.

c) What value has the amount function at this angular frequency, ω_x ?

- d) What value has the phase function at this angular frequency, ω_x ?
- e) Give an expression of the transfer function between $\underline{I}_{R}/\underline{U}_{1}$

(Note! You already have the transfer function $\underline{U}_2/\underline{U}_1$ from a)

$$a)\frac{\underline{U}_{2}(\omega)}{\underline{U}_{1}(\omega)} = ? \quad b) \,\omega_{X}(R,L,C) = ? \quad c)\left|\frac{\underline{U}_{2}(\omega_{X})}{\underline{U}_{1}(\omega_{X})}\right| = ? \quad d) \arg\left(\frac{\underline{U}_{2}(\omega_{X})}{\underline{U}_{1}(\omega_{X})}\right) = ? \quad e)\frac{\underline{I}_{R}(\omega)}{\underline{U}_{1}(\omega)} = ?$$

Filter LCR if time ... (14.8)

a) b)
$$R \parallel C = \frac{R \cdot \frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} \cdot \frac{j\omega C}{j\omega C} = \frac{R}{1 + j\omega RC}$$

$$\frac{\underline{U}_{2}}{\underline{U}_{1}} = \frac{\frac{R}{1+j\omega RC}}{j\omega L + \frac{R}{1+j\omega RC}} \cdot \frac{1+j\omega RC}{1+j\omega RC} = \frac{R}{j\omega L(1+j\omega RC) + R} =$$

$$= \frac{R}{(R - \omega^2 RLC) + j\omega L} \quad RE\left[\frac{\underline{U}_2}{\underline{U}_1}\right] = 0 \quad \Rightarrow \quad \omega^2 RLC = R \quad \omega = \frac{1}{\sqrt{LC}}$$

c)
$$\frac{\underline{U}_2}{\underline{U}_1} = \frac{R}{(R - \omega^2 R L C) + j\omega L} = \left\{ \omega = \frac{1}{\sqrt{LC}} \right\} = \frac{R}{0 + j\sqrt{\frac{L}{C}}} \quad \frac{U_2}{U_1} = \frac{R}{\sqrt{\frac{L}{C}}} = R\sqrt{\frac{C}{L}}$$

$$d) \quad \arg\left[\frac{\underline{U}_{2}}{\underline{U}_{1}}\right] = \arg\left[\frac{R}{j\sqrt{\frac{L}{C}}}\right] = -90^{\circ}$$

$$e) \quad \frac{\underline{I}_{R}}{\underline{U}_{1}} = ? \quad \underline{I}_{R} = \frac{\underline{U}_{2}}{R} \implies \frac{\underline{I}_{R}}{\underline{U}_{1}} = \frac{\underline{U}_{2}}{\underline{U}_{1}} \cdot \frac{1}{R} = \frac{1}{(R - \omega^{2}RLC) + j\omega L}$$

-180

10

10¹

 10^2

10³

104

10⁵

Voltage ratio

William Sandqvist william@kth.se

Current ratio

 $P_1 = P_2 \quad (P_0, I_0 = 0)$ $U_1 \cdot I_1 = U_2 \cdot I_2 \quad \Rightarrow$

Two values are missing? (15.1)

For a transformer the following data was given:

Primary			Secondary		
N_1	<i>U</i> ₁	<i>I</i> ₁	N_2	U_2	<i>I</i> ₂
600	225 V	?	200	?	9 A

Calculate the two values that are missing. I_1 and U_2 .

Two values are missing! (15.1)

For a transformer the following data was given:

Primary			Secondary		
N_1	<i>U</i> ₁	<i>I</i> ₁	N ₂	U_2	I_2
600	225 V	3A	200	75V	9 A

Calculate the two values that are missing. I_1 and U_2 .

$$n = N_1 / N_2 = 600 / 200 = 3$$

$$I_1 = \frac{1}{n}I_2 = \frac{9}{3} = 3$$
 $U_2 = \frac{1}{n}U_1 = \frac{225}{3} = 75$

Two values are missing? (15.2)

For a transformer the following data was given:

Primary			Secondary		
N_1	U_1	<i>I</i> ₁	N_2	U_2	I_2
?	230 V	2A	150	?	12 A

Calculate the two values that are missing. N_1 and U_2 .

Two values are missing! (15.2)

For a transformer the following data was given:

Primary			Secondary		
N_1	<i>U</i> ₁	<i>I</i> ₁	N_2	U_2	I_2
900	230 V	2A	150	38V	12 A

Calculate the two values that are missing. N_1 and U_2 .

$$n = I_2 / I_1 = 12/2 = 6$$

 $N_1 = N_2 \cdot n = 150 \cdot 6 = 900$ $U_2 = U_1/n = 230/6 = 38,3 \text{ V}$

Two values are missing? (15.3)

For a transformer the following data was given:

Primary			Secondary		
N_1	<i>U</i> ₁	<i>I</i> ₁	N_2	U_2	I_2
600	225 V	?	?	127 V	9 A

Calculate the two values that are missing. I_1 and N_2 .

Two values are missing! (15.3)

For a transformer the following data was given:

Primary			Secondary		
N ₁	<i>U</i> ₁	<i>I</i> ₁	N_2	U_2	<i>I</i> ₂
600	225 V	5A	339	127 V	9 A

Calculate the two values that are missing. I_1 and N_2 .

$$\frac{U_1}{U_2} = \frac{N_1}{N_2} = \frac{225}{127} = 1,77 \implies N_2 = \frac{U_2}{U_1} N_1 = \frac{600 \cdot 127}{225} = 339$$
$$I_1 = \frac{N_2}{N_1} I_2 = \frac{339}{600} 9 = 5,08 \text{ A}$$

Inductive coupling

The coupling factor indicates how much of its flow a coil has in common with another coil? An ideal transformer has the coupling factor k = 1 (100%)

 $\pm M$ is called mutal inductance

• Series connected coils

 $L_{TOT} = L_1 + L_2 + 2M$

• Parallel connected coils

$$L_{TOT} = \frac{L_1 \cdot L_2 - M^2}{L_1 + L_2 - 2M}$$

• Anti series connected coils

$$L_{TOT} = L_1 + L_2 - 2M$$

• Anti parallel connected coils

$$L_{TOT} = \frac{L_1 \cdot L_2 - M^2}{L_1 + L_2 + 2M}$$

Mutal inductance (15.8)

$$M_{12}$$
 M_{23} M_{13}
 L_{TOT} L_1 L_2 L_3
Three inductors $L_1 = 12$, $L_2 = 6$, $L_3 = 5$ [H] are series
connected. When inductors are close to each other the
placement on the circuit board can be important. In the
figure to the left a) will inductors to have a portion of the
magnetic lines in common. They then have the mutual
inductances $M_{12} = 3$, $M_{23} = 1$, $M_{13} = 1$ [H].

In the figure to the right b) the inductors are mounted three dimensional so that there are no shared power magnetic lines.

- a) Calculate the total inductance for the arrangement in figure a). $L_{\text{TOT}} = ?$
- b) Calculate the total inductance for the arrangement in figure b). $L_{\text{TOT}} = ?$

Mutal inductance (15.8)

a)
$$L_{TOT} = L_1 - M_{12} + M_{13} + L_2 - M_{12} - M_{23} + L_3 - M_{23} + M_{13} = 12 - 3 + 1 + 6 - 3 - 2 + 5 - 1 + 1 = 16 [H]$$

b) $L_{TOT} = L_1 + L_2 + L_3 = 12 + 6 + 5 = 23 [H]$