IE1206 Embedded Electronics

Phasor - vector

$$
Z=\frac{U}{I}
$$

William Sandqvist william@kth.se

Complex phasors, j ω-method

- Complex OHM's law for $R L$ and C.

$$
\begin{aligned}
& \underline{U}_{\mathrm{R}}=\underline{I}_{\mathrm{R}} \cdot R \\
& \underline{U}_{\mathrm{L}}=\underline{I}_{\mathrm{L}} \cdot \mathrm{j} X_{\mathrm{L}}=\underline{I}_{\mathrm{L}} \cdot \mathrm{j} \omega L \quad \omega=2 \pi \cdot f \\
& \underline{U}_{\mathrm{C}}=\underline{I}_{\mathrm{C}} \cdot \mathrm{j} X_{\mathrm{C}}=\underline{I}_{\mathrm{C}} \cdot \frac{1}{\mathrm{j} \omega C}
\end{aligned}
$$

- Complex OHM's law for Z.

$$
\underline{U}=\underline{I} \cdot \underline{Z} \quad Z=\frac{U}{I} \quad \varphi=\arg (\underline{Z})=\arctan \left(\frac{\operatorname{Im}[\underline{Z}]}{\operatorname{Re}[\underline{Z}]}\right)
$$

ω for half the voltage? (12.3)

U_{1} is a sine voltage with the angular frequency ω. Decide the product $R \cdot C$ (No current is consumed at U_{2}).

ω for half the voltage? (12.3)

U_{1} is a sine voltage with the angular frequency ω. Decide the product $R \cdot C$ (No current is consumed at U_{2}).

$$
\underline{U}_{2}=\underline{U}_{1} \cdot \frac{\frac{1}{\mathrm{j} \omega C}}{R+\frac{1}{\mathrm{j} \omega C}}
$$

ω for half the voltage? (12.3)

U_{1} is a sine voltage with the angular frequency ω. Decide the product $R \cdot C$ (No current is consumed at U_{2}).

$$
\underline{U}_{2}=\underline{U}_{1} \cdot \frac{\frac{1}{\mathrm{j} \omega C}}{R+\frac{1}{\mathrm{j} \omega C}} \cdot \frac{(\mathrm{j} \omega C)}{(\mathrm{j} \omega C)}=
$$

ω for half the voltage? (12.3)

U_{1} is a sine voltage with the angular frequency ω. Decide the product $R \cdot C$ (No current is consumed at U_{2}).

$$
\underline{U}_{2}=\underline{U}_{1} \cdot \frac{\frac{1}{\mathrm{j} \omega C}}{R+\frac{1}{\mathrm{j} \omega C}} \cdot \frac{(\mathrm{j} \omega C)}{(\mathrm{j} \omega C)}=\underline{U}_{1} \cdot \frac{1}{1+\mathrm{j} \omega R C}
$$

ω for half the voltage? (12.3)

U_{1} is a sine voltage with the angular frequency ω. Decide the product $R \cdot C$ (No current is consumed at U_{2}).

$$
\underline{U}_{2}=\underline{U}_{1} \cdot \frac{\frac{1}{\mathrm{j} \omega C}}{R+\frac{1}{\mathrm{j} \omega C}} \cdot \frac{(\mathrm{j} \omega C)}{(\mathrm{j} \omega C)}=\underline{U}_{1} \cdot \frac{1}{1+\mathrm{j} \omega R C} \Rightarrow \frac{U_{1}}{U_{2}}=\sqrt{1+R^{2} \omega^{2} C^{2}}=\frac{10}{5}=2
$$

ω for half the voltage? (12.3)

U_{1} is a sine voltage with the angular frequency ω. Decide the product $R \cdot C$ (No current is consumed at U_{2}).

$$
\begin{aligned}
\underline{U}_{2}=\underline{U}_{1} \cdot \frac{\frac{1}{\mathrm{j} \omega C}}{R+\frac{1}{\mathrm{j} \omega C}} \cdot \frac{(\mathrm{j} \omega C)}{(\mathrm{j} \omega C)}=\underline{U}_{1} \cdot \frac{1}{1+\mathrm{j} \omega R C} \Rightarrow \frac{U_{1}}{U_{2}}=\sqrt{1+R^{2} \omega^{2} C^{2}}=\frac{10}{5} \\
1+R^{2} \omega^{2} C^{2}=4 \quad \Leftrightarrow \quad R \omega C=\sqrt{3} \quad \Leftrightarrow \quad R C=\frac{\sqrt{3}}{\omega}
\end{aligned}
$$

Compare serial with parallel (12.5)

When a resistor R and a capacitor C is connected in parallel to a voltage source U each of them get the current 2A.

How big would the current in the resistor be if the two were series connected to the voltage source?

Compare serial with parallel (12.5)

Parallel connection:

$$
\begin{aligned}
& \underline{I}=\underline{I}_{\mathrm{R}}+\underline{I}_{\mathrm{C}}=\frac{U}{R}+\mathrm{j} U \omega C \quad \underline{I}=2+2 \mathrm{j} \\
& I_{R}=\frac{U}{R}=2 \quad I_{C}=U \omega C=2 \Rightarrow R=\frac{1}{\omega C}=\frac{U}{2}
\end{aligned}
$$

Compare serial with parallel (12.5)

Series connected:

$$
\underline{I}=\frac{U}{R+\frac{1}{\mathrm{j} \omega C}} \Rightarrow I=\frac{U}{\sqrt{R^{2}+\left(\frac{1}{\omega C}\right)^{2}}}
$$

William Sandqvist william@kth.se

Compare serial with parallel (12.5)

Series connected:
As before ...

$$
\begin{aligned}
& \underline{I}=\frac{U}{R+\frac{1}{\mathrm{j} \omega C}} \Rightarrow I=\frac{U}{\sqrt{R^{2}+\left(\frac{1}{\omega C}\right)^{2}}} \quad R=\frac{1}{\omega C}=\frac{U}{2} \\
& \Rightarrow I=\frac{U}{\sqrt{\frac{U^{2}}{2^{2}}+\left(\frac{U}{2}\right)^{2}}}=\frac{U}{U \cdot \sqrt{\frac{1}{4}+\frac{1}{4}}}=\sqrt{2} \approx 1,414 \mathrm{~A}
\end{aligned}
$$

William Sandqvist william@kth.se

Compare serial with parallel (12.5)

Series connection:
As before ...

$$
\begin{aligned}
& I=\frac{U}{R+\frac{1}{\mathrm{j} \omega C}} \Rightarrow I=\frac{U}{\sqrt{R^{2}+\left(\frac{1}{\omega C}\right)^{2}}} \quad R=\frac{1}{\omega C}=\frac{U}{2} \\
& \Rightarrow I=\frac{U}{\sqrt{U^{2}+(U)^{2}}}=\frac{U}{U \cdot \sqrt{\frac{1}{4}+\frac{1}{4}}}=\sqrt{2} \mathrm{~A} \quad \begin{array}{l}
\text { Parallel 2A } \\
\text { Series 1,4A }
\end{array}
\end{aligned}
$$

William Sandqvist william@kth.se

Try yourself ... (12.1)

Set up the complex expression for current I expressed with $U R$ $C \omega$. Let U be reference phase, real. Answer with a expression
 of the form $a+\mathrm{j} b$.

$$
\underline{I}=\underline{I}_{\mathrm{R}}+\underline{I}_{\mathrm{C}}=\frac{U}{R}+\frac{U}{\frac{1}{\mathrm{j} \omega C}}=\frac{U}{R}+\mathrm{j} \omega C \cdot U
$$

Active power in impedance

Set up an expression of the active power P for this impedance. There will only
 be power in the resistors.
U reference phase, real.

$$
\begin{aligned}
& P=I^{2} \cdot R \quad \underline{I}=\frac{U}{\underline{Z}}=\frac{U}{R+\mathrm{j} \omega L} \Rightarrow I=\frac{U}{\sqrt{R^{2}+(\omega L)^{2}}} \\
& P=R \cdot \frac{U^{2}}{R^{2}+(\omega L)^{2}}=\frac{R U^{2}}{R^{2}+(\omega L)^{2}}
\end{aligned}
$$

SL accesscard (13.7)

$$
R_{X}=?
$$

SL access-card contains a RFID-tag that communicates with the turnstyle reader on the frequency $13,56 \mathrm{MHz}$ and uses the data transfer speed of 70 KHz .
To be able to read data in that speed then the resonance circuits inside the reader and the card must have a bandwidth at least twice this data speed: $2 \cdot 70=\mathbf{1 4 0} \mathbf{~ k H z}$.

SL accesscard (13.7)

RFID-tag in the card concists of a parallel resonance circuit

$$
R_{X}=?
$$

$C\left|\mid L\|R\| \| R_{\mathrm{X}}\right.$. The processor in the card consumes current from the resonance circuit. This is symbolized with the resistance R_{X}.

$f_{0}=13,56 \mathrm{MHz}$ $B W=140 \mathrm{kHz}$
$L=2,5 \mu \mathrm{H}$
$r=1,5 \Omega$
$C=55 \mathrm{pF}$
a) Calculate the value of R_{X} gives the card the desired bandwidth $B W$.
b) How big current at the voltage 3 V can the processor $\left(R_{\mathrm{X}}\right)$ then take from the resonant circuit?

SL accesscard (13.7)

- The inductor Q -value:

$$
\begin{aligned}
& Q=\frac{\omega L}{r}=\frac{2 \pi f_{0} \cdot L}{r}= \\
& =\frac{2 \pi \cdot 13,56 \cdot 10^{6} \cdot 2,5 \cdot 10^{-6}}{1,5}=142
\end{aligned}
$$

$$
R_{X}=?
$$

- Transformation of r

$$
R=Q^{2} \cdot r=142^{2} \cdot 1,5=30,25 \mathrm{k} \Omega
$$

- Parallel resistance to give bandwith 140 kHz

$$
\begin{aligned}
& Q_{\mathrm{BW}}=\frac{f_{0}}{\Delta f}=\frac{13,56 \cdot 10^{6}}{140 \cdot 10^{3}}=96,86 \quad Q_{\mathrm{BW}}=\frac{R_{\mathrm{BW}}}{2 \pi \cdot f_{0} \cdot L} \Rightarrow \\
& R_{\mathrm{BW}}=Q_{\mathrm{BW}} \cdot 2 \pi \cdot f_{0} \cdot L=96,86 \cdot 2 \pi \cdot 13,56 \cdot 10^{6} \cdot 2,5 \cdot 10^{-6}=20,63 \mathrm{k} \Omega
\end{aligned}
$$

SL accesscard (13.7)

Parallel resistande for bandwidth 140 kHz

$$
R_{X}=?
$$

$R_{\text {BW }}=20,63 \mathrm{k} \Omega$
a) $R_{\mathrm{BW}}=R_{X} \| R \Rightarrow R_{X}=\frac{R \cdot R_{B W}}{R-R_{B W}}$

$$
R_{X}=\frac{30,25 \cdot 20,63}{30,25-20,63} \cdot 10^{3}=64 \mathrm{k} \Omega
$$

b) $U=I \cdot R_{X} \quad U=3 \quad I=\frac{U}{R_{X}}=\frac{3}{64 \cdot 10^{3}}=47 \mu \mathrm{~A}$

To measure Q-value

Radio controled clock is a clock that is automatically synchronized with a time code from a radio transmitter in Germany, on longvawe $77,5 \mathrm{kHz}$. The time signal consists of pulses encoded digitally. The signal strength is weak so such a receiver uses a tuned resonant circuit with L and C. The coil has a ferrite core, and this is also used as an antenna.
In a project we have to measure the Q -value this resonance circuit. How will this be done? Other values:
$L=1,5 \mathrm{mH}$
$C=2,8 \mathrm{nF}$

To measure Q-value

$$
U_{I N}=15 \mathrm{~V}
$$

This is how to measure the inductor's Q-value.
$U_{\text {IN }}=15 \mathrm{~V}$ is a sine voltage with the frequency $77,5 \mathrm{kHz}$ (the resonance resonansfrequency) which is voltage divided to 15 mV . Over the capacitor we then measures the much bigger voltage $U_{\mathrm{UT}}=1,73 \mathrm{~V}$.
a) What is the inductor's Q-value?
b) What is the value of the inductor's internal resitance r (will also include other losses)?

To measure Q-value

The voltage divider: $\quad U_{r}=15 \frac{0,1}{100}=0,015 \mathrm{~V}$
a) $Q=\frac{2 \pi f \cdot L}{r} \cdot \frac{I}{I}=\frac{U_{L}}{U_{r}}=\left\{U_{L}=U_{C}=U_{U T}\right\}=\frac{U_{U T}}{U_{r}}=\frac{1,73}{0,015}=115$
b) $r=\frac{2 \pi f \cdot L}{Q}=\frac{2 \pi \cdot 77,5 \cdot 10^{3} \cdot 1,5 \cdot 10^{-3}}{115}=6,33 \Omega$ Big compared with $0,1 \Omega$ from voltage divider.

Thevenin equivalent with inductor (12.4)

Determine the value of the current I.

Use Thevenin equivalent.

Thevenin equivalent with inductor (12.4)

Determine the value of the current I.

Use Thevenin equivalent.

William Sandqvist william@kth.se

Thevenin equivalent with inductor (12.4)

Calculate the Thevenin equivalent E_{0} and R_{I} of this circuit.

William Sandqvist william@kth.se

Thevenin equivalent with inductor (12.4)

Calculate the Thevenin equivalent E_{0} and R_{I} of this circuit.

William Sandqvist william@kth.se

Thevenin equivalent with inductor (12.4)

Calculate the Thevenin equivalent E_{0} and R_{I} of this circuit.

The emf and resistors - this time as with DC circuits ...

$$
R_{I}=\frac{75 \cdot 50}{75+50}=30 \Omega \quad E_{0}=220 \frac{50}{75+50}=88 \mathrm{~V}
$$

The inductor - now it must be considered an AC circuits ...

$$
\underline{I}=\frac{U}{\underline{Z}} \Rightarrow I=\frac{88}{|(30+10)+\mathrm{j} 40|}=\frac{88}{\sqrt{(30+10)^{2}+40^{2}}}=1,56 \mathrm{~A}
$$

William Sandqvist william@kth.se

Example. Complex equivalent

a) Derive the equivalent complex circuit with $E_{0}+Z_{\mathrm{I}}$.
b) Suppose that we can load the circuit with an arbitrary chosen impedance - how should this be composed if one wishes the power in the load to be the maximum? (Maximum power transfer theorem).

Example. Complex equivalent, E_{0}

E_{0} is calculated as the divided voltage. If U is the reference phase we get $E_{0} 8,47 \mathrm{~V}$ and gets the phase 45° to U. If there are no other voltage sources or current sources in the circuit then we don't have to keep track on the phase, as E_{0} might as well become the network's new reference phase!

$$
\underline{E}_{0}=U \frac{\mathrm{j} \omega L}{R+\mathrm{j} \omega L}=12 \frac{\mathrm{j} 2 \pi 1000 \cdot 0,01}{63+\mathrm{j} 2 \pi 1000 \cdot 0,01}=6+6 \mathrm{j} \quad E_{0}=\sqrt{6^{2}+6^{2}}=8,48 \mathrm{~V}
$$

Example. Complex equivalent, $Z_{\text {I }}$

Z_{I} is the impedance we see if we turn down U.

$$
\underline{Z}_{I}=\frac{R \cdot \mathrm{j} \omega L}{R+\mathrm{j} \omega L}=\frac{63 \cdot \mathrm{j} 2 \pi 1000 \cdot 0,01}{63+\mathrm{j} 2 \pi 1000 \cdot 0,01}=31,4+31,5 \mathrm{j}
$$

Maximum power, X

The equivalent circuit is $8,57 \mathrm{~V}$ an emf with internal impedance $Z_{I}=31,4+31,5 \mathrm{j}$.

- Maximum power.

At resonance inductance and capacitance cancel each other. This will maximize the power in the load. Therefore, the load this time should be capacitive $(-31,5 \mathrm{j})$.

When the two reactances cancel each other the circuit becomes completely resistive. What load resistance will give the maximum power?

Maximum power, R_{\mid}

$$
P=R_{\mathrm{L}} \cdot I^{2} \quad I=\frac{E_{0}}{R_{\mathrm{I}}+R_{\mathrm{L}}} \Rightarrow P=E_{0}^{2} \cdot \frac{R_{\mathrm{L}}}{\left(R_{\mathrm{I}}+R_{\mathrm{L}}\right)^{2}}
$$

When do $P\left(R_{\mathrm{L}}\right)$ have a maximum? (You get simpler calculations if you turn to the question to "where is $1 / \mathrm{P}$ minimum").

$$
\begin{aligned}
& \frac{1}{P}=\frac{1}{E_{0}^{2}} \cdot\left(\frac{R_{\mathrm{L}}^{2}}{R_{\mathrm{L}}}+\frac{R_{\mathrm{I}}^{2}}{R_{\mathrm{L}}}+2 \cdot \frac{R_{\mathrm{I}} \cdot R_{\mathrm{L}}}{R_{\mathrm{L}}}\right)=\frac{1}{E_{0}^{2}} \cdot\left(R_{\mathrm{L}}+2 \cdot R_{\mathrm{I}}+\frac{R_{\mathrm{I}}^{2}}{R_{\mathrm{L}}}\right) \\
& \frac{\mathrm{d}}{\mathrm{~d} R_{\mathrm{L}}}\left(\frac{1}{P}\right)=\frac{\mathrm{d}}{\mathrm{~d} R_{\mathrm{L}}}\left(\frac{1}{E_{0}^{2}} \cdot\left(R_{\mathrm{L}}+2 \cdot R_{\mathrm{I}}+\frac{R_{\mathrm{I}}^{2}}{R_{\mathrm{L}}}\right)\right)=1-\frac{R_{\mathrm{I}}^{2}}{R_{\mathrm{L}}^{2}}=0 \Rightarrow R_{\mathrm{L}}=R_{\mathrm{I}}
\end{aligned}
$$

Maximum transfered power if you chose $R_{\mathrm{L}}=R_{\mathrm{I}}$. ($R_{\mathrm{L}}=31,4 \Omega$).

The maximum power

How big is the power for $R_{\mathrm{L}}=R_{\mathrm{I}}$ (Maximum power)?
$P=E_{0}^{2} \cdot \frac{R_{\mathrm{L}}}{\left(R_{\mathrm{I}}+R_{\mathrm{L}}\right)^{2}} \quad R_{\mathrm{I}}=R_{\mathrm{L}} \quad \Rightarrow \quad P_{M A X}=\frac{E_{0}^{2}}{4 \cdot R_{\mathrm{I}}}$

How big are the losses inside the equivalent circuit?
If $R_{\mathrm{L}}=R_{\mathrm{I}}$ the power is divided equal between the internal resistance and the load. This means that the Thermal efficiency will be 50% ($=\mathrm{bad}$).

Maximum power transfer, impedance matching, is only used when neccessary, such as for radio transmitters.

Maximum power transfer

At power match with a load equal to the complex conjugate of the internal impedance, the effect:

$$
P_{\max }=\frac{\left|\underline{E}_{0}\right|^{2}}{4 \cdot \operatorname{Re}\left[\underline{Z}_{I}\right]}
$$

William Sandqvist william@kth.se

