IE1206 Embedded Electronics

Voltage divider formula

Voltage

According to the voltage divider formula you get a divided voltage, for example U_{1} across the resistor R_{1}, by multiplying the total voltage U with a voltage division factor. This voltage division factor is the resistance R_{1} divided by the sum of all the resistors that are in the series connection.

William Sandqvist william@kth.se

Unbalanced Wheatstone bridge

Points A and B are approximately at half the battery voltage. A is closer to "+ pole" and B is closer to "-pole." The difference U_{AB} can be measured with a sensitive millivolt meter connected between A and B.

Unbalanced Wheatstone bridge

Points A and B are approximately at half the battery voltage. A is closer to "+ pole" and B is closer to "-pole." The difference U_{AB} can be measured with a sensitive millivolt meter connected between A and B .

$$
U_{A B}=10 \frac{501}{499+501}-10 \frac{499}{501+499}=0,02 \mathrm{~V}
$$

Unbalanced Wheatstone bridge

Points A and B are approximately at half the battery voltage. A is closer to "+ pole" and B is closer to "-pole." The difference U_{AB} can be measured with a sensitive millivolt meter connected between A and B .

$$
U_{A B}=10 \frac{501}{499+501}-10 \frac{499}{501+499}=0,02 \mathrm{~V}
$$

Why has the resistors values 501 and 499?

Loadcell

Industrial scales. Two strain gauges on the top of a beam increases from 500 to 501 . Two strain gauge on the bottom of a beam decreases 500 to 499.

The gauges are connected as a Wheatstone bridge. The unbalance voltage is a direct measure on the force F (or if it's a scale $F=\mathrm{mg}$).

Bending Beam Load Cell

William Sandqvist william@kth.se

Potential (7.1)

A voltage divider cosists of three resistors $R_{1}=100 \Omega$, R_{2}
$=110 \Omega, R_{3}=120 \Omega$, they are connected to a emf $E=12 \mathrm{~V}$.

One measures the potential (voltage relative to ground) at various sockets on the the voltage divider.
Voltmeter negative terminal is all the time connected to the socket \mathbf{b}, ground, while the positive terminal of the voltmeter in turn connects to the $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{d}. What does the voltmeter show?

Potential (7.1)

Socket	a)	b)	c)	d)
Voltmeter $[V]$				

William Sandqvist william@kth.se

$$
U_{a b}=-U_{b a}=-12 \frac{\text { Potential (T.1) }}{100+110+120}=-4,37
$$

Socket	a)	b)	c)	d)
Voltmeter [V]	$-4,37$			

William Sandqvist william@kth.se

$$
U_{a b}=-U_{b a}=-12 \frac{\text { Potential (T.1) }}{100+110+120}=-4,37
$$

Socket	a)	b)	c)	d)
Voltmeter [V]	$-4,37$	0		

William Sandqvist william@kth.se

Potential (7.1)

$$
\begin{aligned}
& U_{a b}=-U_{b a}=-12 \frac{120}{100+110+120}=-4,37 \\
& U_{c b}=12 \frac{110}{100+110+120}=4
\end{aligned}
$$

Socket	a)	b)	c)	d)
Voltmeter [V]	$-4,37$	0	4	

William Sandqvist william@kth.se

Potential (7.1)

$$
\begin{aligned}
& U_{a b}=-U_{b a}=-12 \frac{120}{100+110+120}=-4,37 \\
& U_{c b}=12 \frac{110}{100+110+120}=4 \\
& U_{d b}=12 \frac{100+110}{100+110+120}=7,64
\end{aligned}
$$

Socket	a)	b)	c)	d)
Voltmeter [V]	$-4,37$	0	4	7,64

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Kirchhoff's voltage law (5.3)

William Sandqvist william@kth.se

Kirchhoff's voltage law (5.3)

$$
I=\frac{1,3}{1,5+1,6+0,4+0,8+0,5}=0,27
$$

Kirchhoff's voltage law (5.3)

$$
I=\frac{1,3}{1,5+1,6+0,4+0,8+0,5}=0,27 \quad \begin{array}{ll}
U_{0,5}=0,5 \cdot 0,27=0,14 \\
U_{1,5}=1,5 \cdot 0,27=0,41
\end{array}
$$

Kirchhoff's voltage law (5.3)

$$
\begin{gathered}
I=\frac{1,3}{1,5+1,6+0,4+0,8+0,5}=0,27 \quad \begin{array}{c}
U_{0,5}=0,5 \cdot 0,27=0,14 \\
U_{1,5}
\end{array}=1,5 \cdot 0,27=0,41 \\
U=-0,14+1,3-0,41=0,76 \mathrm{~V} \\
\text { eller } U=0,27 \cdot(0,8+0,4+1,6)=0,76 \mathrm{~V}
\end{gathered}
$$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Kirchhoffs current law (5.1)

Can you guess the currents?
$I_{1}=5 \mathrm{~A}$
$I_{2}=2,5 \mathrm{~A}$
$I_{3}=2,5 \mathrm{~A}$
$I_{4}=5 \mathrm{~A}$

$$
\begin{aligned}
& I_{1}+I_{4}=10 \\
& I_{1}=I_{2}+I_{3} \quad I_{2}=I_{3}
\end{aligned}
$$

Parallel circuit, OHM's law: $I_{4} \cdot 2=I_{1} \cdot(1+2 / / 2) \Rightarrow I_{4}=I_{1}=10 / 2=5$
$I_{1}=I_{2}+I_{3} \Rightarrow I_{2}=I_{3}=5 / 2=2,5$

William Sandqvist william@kth.se

Kirchhoffs current law (5.2)

Now we must calculate

$$
R_{\text {ERS }}=\frac{\left(6+\frac{8 \cdot 2}{8+2}\right) \cdot 4}{\left(6+\frac{8 \cdot 2}{8+2}\right)+4}=2.62 \Omega \quad E=R_{E R S} \cdot I=2,62 \cdot 10=26,2 \mathrm{~V}
$$

$$
I_{4}=\frac{E}{4}=\frac{26,2}{4}=6,55 \mathrm{~A} \quad I_{1}=I-I_{4}=10-6,55=3,45 \mathrm{~A}
$$

$$
I_{2}=\frac{E-6 \cdot I_{1}}{8}=\frac{26,2-3,45 \cdot 6}{8}=\frac{5,5}{8}=0,69 \mathrm{~A} \quad I_{3}=\frac{5,5}{2}=2,75 \mathrm{~A}
$$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Kirchhoffs laws? (6.3)

a) $U_{\mathrm{R} 2}=$?
b) $I_{2}=$?
c) $\quad I_{1}=$?

Kirchhoffs laws? (6.3)

a) $U_{\mathrm{R} 2}=$? $=18 \mathrm{~V}\left(E_{1}\right)$
b) $I_{2}=$?
c) $\quad I_{1}=$?
$18+I_{3} 18=0 \quad I_{3}=-18 / 18=-1 \mathrm{~A}$

Kirchhoffs laws? (6.3)

a) $U_{\mathrm{R} 2}=$? $=18 \mathrm{~V}\left(E_{1}\right)$
b) $I_{2}=$?
$18+6 I_{2}-12=0$ $I_{2}=(12-18) / 6=-1 \mathrm{~A}$
c) $\quad I_{1}=$?
$18+I_{3} 18=0 \quad I_{3}=-18 / 18=-1 \mathrm{~A}$

Kirchhoffs laws? (6.3)

a) $\quad U_{R 2}=$?
$=18 \mathrm{~V}\left(E_{1}\right)$
b) $I_{2}=$?
$18+6 I_{2}-12=0$ $I_{2}=(12-18) / 6=-1 \mathrm{~A}$
c) $\quad I_{1}=$?
$18+I_{3} 18=0 \quad I_{3}=-18 / 18=-1 \mathrm{~A}$ 18 V
$I_{1}+I_{2}+I_{3}=0$
$I_{1}=-I_{2}-I_{3}=-(-1)-(-1)=2 \mathrm{~A}$

Kirchhoffs laws? (6.3)

$$
\begin{align*}
& \text { a) } U_{\mathrm{R} 2}=? \quad=18 \mathrm{~V}\left(E_{1}\right) \\
& \text { b) } I_{2}=? \quad 18+6 I_{2}-12=0 \\
& \text { c) } I_{1}=? \\
& \left.18+I_{3} 18=0 \quad I_{3}=-18 / 18=-18\right) / 6=-1 \mathrm{~A} \\
& I_{1}+I_{2}+I_{3}=0 \\
& I_{1}=-I_{2}-I_{3}=-(-18 \mathrm{~V})-(-1)=2 \mathrm{~A}
\end{align*}
$$

That E_{1} is an ideal emf is what simplifies the calculations!

Or with node analysis (7.3)

$$
\begin{aligned}
& I_{1}+I_{2}+I_{3}=0 \quad I_{1}=-I_{2}-I_{3} \\
& E_{1}=18 \mathrm{~V} \\
& I_{3}=-\left(E_{1}-0\right) / R_{2}=-18 / 18 \\
& =-1 \mathrm{~A} \\
& I_{2}=-\left(E_{1}-E_{2}\right) / R_{1}=-(18-12) / 6= \\
& =-1 \mathrm{~A} \\
& I_{1}=-I_{2}-I_{3}=-(-1)-(-1)=2 \mathrm{~A}
\end{aligned}
$$

William Sandqvist william@kth.se

Batteries in parallel (4.4)

Three similar batteries $E=10 \mathrm{~V}$ and the internal resistance 6Ω are parallel-connected to deliver current to a resistor with resistance 2Ω.
a) How much will current I and terminal voltage U be?

The three internal resistances 6Ω have common voltage in both ends, and is thereby effectively paralleled. $R_{\mathrm{I}}=6 / 3=2 \Omega . I=2,5$ A och $U=5 \mathrm{~V}$.

William Sandqvist william@kth.se

One battery inserted the wrong way!

Suggestion.
Merge batteries

One battery inserted the wrong way!

Suggestion.
Merge batteries

William Sandqvist william@kth.se

One battery inserted the wrong way!

Suggestion.

Merge batteries
This is now a more complicated circuit that requires Kirchhoff's laws to be solved ...

One battery inserted the wrong way!

Suggestion.

Merge batteries

$$
\begin{aligned}
& I_{1}-I_{2}-I=0 \\
& 10-3 I_{1}+10-6 I_{2}=0 \quad \Leftrightarrow \quad-3 I_{1}-6 I_{2}+0 I=-20 \\
& 6 I_{2}-10-2 I=0 \quad \Leftrightarrow \quad 0 I_{1}+6 I_{2}-2 I=10 \\
& \left(\begin{array}{ccc}
1 & -1 & -1 \\
-3 & -6 & 0 \\
0 & 6 & -2
\end{array}\right) \cdot\left(\begin{array}{c}
I_{1} \\
I_{2} \\
I
\end{array}\right)=\left(\begin{array}{c}
0 \\
-20 \\
10
\end{array}\right)
\end{aligned}
$$

William Sandqvist william@kth.se

One battery inserted the wrong way!

Suggestion.

Merge batteries

$$
\begin{aligned}
& I_{1}-I_{2}-I=0 \\
& 10-3 I_{1}+10-6 I_{2}=0 \Leftrightarrow-3 I_{1}-6 I_{2}+0 I \\
& 6 I_{2}-10-2 I=0 \Leftrightarrow 0 I_{1}+6 I_{2}-2 I=10 \\
& \left(\begin{array}{ccc}
1 & -1 & -1 \\
-3 & -6 & 0 \\
0 & 6 & -2
\end{array}\right) \cdot\left(\begin{array}{c}
I_{1} \\
I_{2} \\
I
\end{array}\right)=\left(\begin{array}{c}
0 \\
-20 \\
10
\end{array}\right)
\end{aligned}
$$

$$
10-3 I_{1}+10-6 I_{2}=0 \Leftrightarrow-3 I_{1}-6 I_{2}+0 I=-20 \quad I_{1}=2,78 \mathrm{~A}
$$

$$
I_{2}=1,94 \mathrm{~A}
$$

$$
I=0,83 \mathrm{~A}
$$

$$
U=I \cdot 2=0,83 \cdot 2=1,67 \mathrm{~V}
$$

William Sandqvist william@kth.se

