
Computer Hardware Engineering

Lecture 10: SIMD, MIMD, and Parallel Programming

David Broman
Associate Professor, KTH Royal Institute of Technology

Assistant Research Engineer, University of California, Berkeley

IS1200, spring 2015

Slides version 1.0

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

2

Part II
MIMD, Multicore,
and Clusters

Course Structure

L

Module 1: Logic Design

Module 3: Processor Design

Module 2: C and Assembly
Programming

Module 5: Memory Hierarchy

Module 4: I/O Systems

Module 6: Parallel Processors
and Programs

L

L1

L3

L4

L5

L8

L7

L10

DCÖ1 Lab:dicom

E1

Lab: nios2time

Home lab: C

Home Lab: cache

Lab: nios2io

Lab: nios2int

L6 L9

DCÖ2

L2

E2

E4

E3

E5

E6 E7

E8

E9

E10

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

3

Part II
MIMD, Multicore,
and Clusters

Abstractions in Computer Systems

Instruction Set Architecture

Microarchitecture

Logic and Building Blocks

Digital Circuits

Analog Circuits

Devices and Physics

Operating System

Application Software

Computer System Networked Systems and Systems of Systems

Software

Hardware/Software Interface

Digital Hardware Design

Analog Design and Physics

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

4

Part II
MIMD, Multicore,
and Clusters

Agenda

Part I

SIMD, Multithreading, and GPUs

Part III

Parallelization in Practice

Part II

MIMD, Multicore, and Clusters

DLP TLP

DLP TLP +

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

5

Part II
MIMD, Multicore,
and Clusters

Part I

SIMD, Multithreading, and GPUs

Acknowledgement: The structure and several of the good examples are derived from the book
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy

DLP

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

6

Part II
MIMD, Multicore,
and Clusters

SISD, SIMD, and MIMD (Revisited)

In
st

ru
ct

io
n

St
re

am

Data Stream

Single Multiple

Si
ng

le

M
ul

tip
le

SISD

E.g. Intel
Pentium 4

Data-level parallelism. Examples
are multimedia extensions (e.g.,
SSE, streaming SIMD
extension), vector processors.

SIMD

MISD

No examples today

MIMD
Task-level parallelism.
Examples are multicore and
cluster computers

E.g. Intel
Core i7

E.g. SSE
Instruction in x86

Graphical Unit Processors
(GPUs) are both SIMD and
MIMD

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

7

Part II
MIMD, Multicore,
and Clusters

Subword Parallelism and
Multimedia Extensions

Subword parallelism is when a wide
data word is operated on in parallel.

This is the same as SIMD or
data-level parallelism.

Subword
Parallelism

NEON multimedia extension for ARMv7 and ARMv8
(32 registers 8 bytes wide or 16 registers 16 bytes wide)

Instruction 32-bit data 32-bit data 32-bit data 32-bit data

One instruction operates on
multiple data items.

MMX (MutliMedia eXtension), first SIMD by Intel Pentium
processors (introduced 1997). Only on Integers.

3D Now! AMD, included single-precision floating-point (1998)

SSE (Streaming SIMD Extension) introduced by Intel in
Pentium III (year 1999). Included single-precision FP.

AVX (Advanced Vector Extension), supported by both Intel
and AMD (processors available in 2011). Added support for
256 bits and double-precision FP.

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

8

Part II
MIMD, Multicore,
and Clusters

Streaming SIMD Extension (SSE) and
Advanced Vector Extension (AVX)

AVX introduced three-operand format
Meaning: %ymm4 = %ymm0 + %ymm1

addpd %xmm0, %xmm4

In SSE (and the later version SSE2), assembly
instructions are using two-operand format.

meaning: %xmm4 = %xmm4 + %xmm0
Note the reversed order (Intel assembly in general)

Registers (e.g. %xmm4) are 128-bits in SSE/SEE2.

vaddpd %ymm0, %ymm1, %ymm4
vmovapd %ymm4, (%r11)

Added the “v” for vector to distinguish
AVX from SSE and renamed registers
to %ymm that are now 256-bit “pd” means Packed Double precision FP. It can

operate on as many FP that fits in the register
Question: How many FP additions
does vaddpd perform in parallel? Answer: 4

Moves the result to the memory address stored in
%r11 (a 64-bit register). Stores the four 64-bit FP
in consecutive order in memory.

E

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

9

Part II
MIMD, Multicore,
and Clusters

Vector Processors

Vector
Processors

Older, but elegant version if SIMD. Dates back to the
supercomputers in the 70s (Seymour Cray)

Vector processors have large vector registers, e.g., 32
vector registers, each having 64 64-bit elements.

MUL
Element 1

ADD
Element 1

Stall

MUL
Element 2

ADD
Element 2

Stall

Loop,
branch
etc.

MUL
Element 1

ADD
Element 1

MUL
Element 2

MUL
Element 3

ADD
Element 2

MUL
element 0

ADD
Element 3

MUL
element 0

Sequential code in a
loop. Stall between
instructions.

In a vector processor,
operations are pipelines.
Stall only once per vector
operation.

Efficient use of memory
and low instruction
bandwidth give good
energy characteristics.

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

10

Part II
MIMD, Multicore,
and Clusters

Recall the idea of a
multi-issue uniprocesor

Thread A Thread B Thread C

Slot 1
Slot 2
Slot 3

Time

Executes only one hardware thread
(context switching must be done in
software)

Typically, all functional units cannot
be fully utilized in a single-threaded
program (white space is unused
slot/functional unit).

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

11

Part II
MIMD, Multicore,
and Clusters

Hardware Multithreading

Slot 1
Slot 2
Slot 3

Time

Slot 1
Slot 2
Slot 3

Time

Thread A Thread B Thread C In a multithreaded processor, several hardware
threads share the same functional units.

Coarse-grained multithreading,
switches threads only at costly
stalls, e.g., last-level cache misses.

The purpose of multithreading is to hide latencies
and avoid stalls due to cache misses etc.

Fine-grained multithreading
switches between hardware
threads every cycle. Better
utilization.

Cannot overcome throughput
losses in short stalls.

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

12

Part II
MIMD, Multicore,
and Clusters

Simultaneous multithreading (SMT)

Slot 1
Slot 2
Slot 3

Time

Thread A Thread B Thread C Simultaneous multithreading (SMT) combines
multithreading with a multiple-issue, dynamically
scheduled pipeline.

Can fill in the wholes that multiple-
issue cannot utilize with cycles
from other hardware threads. Thus,
better utilization.

Example: Hyper-threading is
Intel's name and implementation of
SMT. That is why a processor can
have 2 real cores, but the OS
shows 4 cores (4 hardware
threads).

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

13

Part II
MIMD, Multicore,
and Clusters

Graphical Processing Units (GPUs)
A Graphical Processing Unit (GPU) utilizes multithreading,
MIMD, SIMD, and ILP. The main form of parallelism that can
be used is data-level parallelism.

CUDA (Compute Unified Device Architecture) is a
parallel computing platform and programming model
from NVIDIA.

CUDA
GPU

All parallelism are expressed as CUDA threads.
Therefore, the model is also called
Single Instruction Multiple Thread (SIMT).

A GPU consists of a set of multithreaded SIMD
processors (called streaming multiprocessor using
NVIDIA terms). For instance 16 processors.

The main idea is to execute a massive number of threads and to use
multithreading to hide latency. However, the latest GPUs also include a caches.

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

14

Part II
MIMD, Multicore,
and Clusters

Part II

MIMD, Multicore, and Clusters

Acknowledgement: The structure and several of the good examples are derived from the book
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy

TLP

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

15

Part II
MIMD, Multicore,
and Clusters

Shared Memory Multiprocessor (SMP)
A Shared Memory Multiprocessor (SMP) has a single
physical address space across all processors.

An SMP is almost always the same as a multicore processor.

Processor
Core

Memory

L1 Cache

L2 Cache

Processor
Core

L1 Cache

Processor
Core

L1 Cache

Processors (cores) in a SMP
communicate via shared memory.

In a uniform memory access (UMA)
multiprocessor, the latency of
accessing memory does not depend
on the processor.

In a nonuniform memory access
(NUMA) multiprocessor, memory can
be divided between processor and
result in different latencies.

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

16

Part II
MIMD, Multicore,
and Clusters

Cache Coherence
Different cores’ local caches could result in that different cores see
different values for the same memory address.
This is called the cache coherency problem.

Processor
Core 1

Cache

Memory

Processor
Core 2

Cache

Processor
Core 1

Cache

Memory

Processor
Core 2

Cache

Processor
Core 1

Cache

Memory

Processor
Core 2

Cache

Time step 1 Time step 2 Time step 3

0

0

Core 1 reads
memory position X.
The value is stored
in Core 1’s cache.

0

0 0

Core 2 reads
memory position X.
The value is stored
in Core 2’s cache.

Core 1
writes to
memory.

1

1 0

Core 2 sees
the incorrect
value.

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

17

Part II
MIMD, Multicore,
and Clusters

Snooping Protocol
Cache coherence can be enforced using a cache coherence protocol. For
instance a write invalidate protocol, such as the snooping protocol.

Processor
Core 1

Cache

Memory

Processor
Core 2

Cache

Processor
Core 1

Cache

Memory

Processor
Core 2

Cache

Processor
Core 1

Cache

Memory

Processor
Core 2

Cache

Time step 2 Time step 2 Time step 3

0

0

1

1

Core 1
writes to
memory.

1

1

Core 2 now tries to read the
variable, it gets a cache miss
and loads the new value from
memory (heavily simplified
example)

0

Core 2 reads
memory position X.
The value is stored
in Core 2’s cache.

The write
invalidates
the cache
line of other
processors.

1

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

18

Part II
MIMD, Multicore,
and Clusters

False Sharing

Processor Core 1

Cache

Memory

Processor Core 2

Cache line Z

X = 1

Y = 0

Cache

Cache line Z

X = 1

Y = 0

Assume that Core 1 and Core 2 share a
cache line Z.

Core 1 reads and writes to X and
Core 2 reads and writes to Y.

This will result in that the
cache coherence protocol
will invalidate the other
core’s cache line, even if the
cores are not interested in
the other ones variable!

This is called false sharing.

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

19

Part II
MIMD, Multicore,
and Clusters

Processes, Threads, and Cores

Operating
System

Process

Process

Process

Thread

Thread

Thread

Thread

C

Memory

C C C

C C C C

A modern operating system (OS)
can execute several processes
concurrently.

A process context include its own
virtual memory space, IO files, real-
only code, heap, shared library,
process id (PID) etc.

Each process can have N number of
concurrent threads. The thread context
includes thread ID, stack, stack pointer,
program counter etc.

Note: All threads share the process
context, including virtual memory etc.

Concurrent threads are
scheduled by the OS to execute
in parallel on different cores.

Hands-on:
Activity
Monitor

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

20

Part II
MIMD, Multicore,
and Clusters

Programming with Threads and
Shared Variables

#include <stdio.h>
#include <pthread.h>

volatile int counter = 0;

void *count(void *data){
 int i;
 int max = *((int*)data);
 for(i=0; i<max; i++)
 counter++;
 pthread_exit(NULL);
}

int main(){
 pthread_t tid1, tid2;
 int max;
 max = 40000;
 pthread_create(&tid1, NULL, count, &max);

 max = 60000;
 pthread_create(&tid2, NULL, count, &max);

 pthread_join(tid1, NULL);
 pthread_join(tid2, NULL);
 printf("counter = %d\n", counter);
 pthread_exit(NULL);
}

POSIX threads (pthreads) is a common way of programming
concurrency and utilizing multicores for parallel computation.

Creates two threads, each is
counting a shared variable.

Exercise: What is the output?
Hands-on:

Show
example

Answer: Different values each time…

E

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

21

Part II
MIMD, Multicore,
and Clusters

Semaphores
A semaphore is a global variable that can hold a nonnegative integer
value. It can only be changed by the following two operations.

P(s) P(s): If s > 0, then decrement s and return.
If s = 0, then wait until s > 0, then decrement
s and return.

V(s) V(s): Increment s.

Note that the check
and return of P(s)
and increment of
V(s) must be atomic,
meaning that
appears to be
“instantaneously”.

Semaphores were invented y Edsger Dijkstra, who was originally from the
Neatherlands. P and V is supposed to come from the Dutch words
Proberen (to test) and Verlogen (to increment).

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

22

Part II
MIMD, Multicore,
and Clusters

Mutex
A semaphore can be used for mutual exclusion, meaning that only one thread can access a
particular resource at the same time. Such a binary semaphore is called a mutex.

semaphore s = 1

One of more threads execute:
 P(s);
 Code to
 protected...
 V(s);

A global binary semaphore is initiated to 1.

One or more threads are executing code that
needs to be protected.

P(s), also called wait(s), checks if the semaphore
is nonzero. If so, lock the mutex, else wait.

V(s), also called post, unlocks the mutex and
increments the semaphore.

In the critical section, it is ensured that not more than
one thread can execute the code at the same time.

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

23

Part II
MIMD, Multicore,
and Clusters

Programming with Threads and
Shared Variables with Semaphores

volatile int counter = 0;
sem_t *mutex;

void *count(void *data){
 int i;
 int max = *((int*)data);
 for(i=0; i<max; i++){
 sem_wait(mutex); /* P()*/
 counter++;
 sem_post(mutex); /* V(m)*/
 }
 pthread_exit(NULL);
}

int main(){
 pthread_t tid1, tid2;
 int max;

 mutex = sem_open("/semaphore", O_CREAT,
 O_RDWR, 1);
 max = 40000;
 pthread_create(&tid1, NULL, count, &max);
 max = 60000;
 pthread_create(&tid2, NULL, count, &max);

 pthread_join(tid1, NULL);
 pthread_join(tid2, NULL);
 printf("counter = %d\n", counter);
 sem_close(mutex);
 pthread_exit(NULL);
}

Hands-on:
Show

example

Exercise: Is it correct
this time?

E

Problem. We update the value
max, that is also shared…

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

24

Part II
MIMD, Multicore,
and Clusters

Programming with Threads and
Shared Variables with Semaphores

volatile int counter = 0;
sem_t *mutex;

void *count(void *data){
 int i;
 int max = *((int*)data);
 for(i=0; i<max; i++){
 sem_wait(mutex); /*P()*/
 counter++;
 sem_post(mutex); /*V(m)*/
 }
 pthread_exit(NULL);
}

int main(){
 pthread_t tid1, tid2;
 int max1 = 40000;
 int max2 = 60000;

 mutex = sem_open("/semaphore", O_CREAT,
 0777, 1);
 pthread_create(&tid1, NULL, count, &max1);
 pthread_create(&tid2, NULL, count, &max2);

 pthread_join(tid1, NULL);
 pthread_join(tid2, NULL);
 printf("counter = %d\n", counter);
 sem_close(mutex);
 pthread_exit(NULL);
} Hands-on:

Show
example

Correct solution…

E

Simple solution. Use different
variables.

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

25

Part II
MIMD, Multicore,
and Clusters

Clusters and Warehouse Scale Computers
E

A cluster is a set of computers that are
connected over a local area network (LAN).
May be viewed as one large multiprocessor.

Photo by Robert Harker

Warehouse-Scale Computers are very large cluster that
can include 100 000 servers that act as one giant computer
(e.g., Facebook, Google, Apple).

Computer
1

Computer
2

Computer
N

Computer
N-1

Clusters do not communicate over shared memory (as
for SMP) but using message passing.

The MapReduce and Hadoop framework are
popular for batch processing.

1. Map applies a programmer defined function on all
data items.
2. Reduce collects the output and collapse the data
using another programmer defined function.

Both tasks are highly parallel.

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

26

Part II
MIMD, Multicore,
and Clusters

Part III

Parallelization in Practice

DLP TLP +

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

27

Part II
MIMD, Multicore,
and Clusters

General Matrix Multiplication (GEMM)

void dgemm(int n, double* A, double* B, double* C){
 for(int i = 0; i < n; ++i)
 for(int j = 0; j < n; ++j){
 double cij = C[i+j*n];
 for(int k = 0; k < n; k++)
 cij += A[i+k*n] * B[k+j*n];
 C[i+j*n] = cij;
 }
}

Hands-on:
Show

example

Simple matrix multiplication
Uses matrix size n as a
parameter and single
dimension for
performance.

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

28

Part II
MIMD, Multicore,
and Clusters

Parallelizing GEMM

SIMD
Use AVX instructions vaddpd and vmulpd
to do 4 double precision floating-point
operations in parallel.
.

For details see P&H, 5th edtion, sections 3.8, 4.12, 5.14, and 6.12

AVX + unroll parts of the loop, so that the
multiple-issue, out-of-order processor have
more instructions to schedule.

ILP

Unoptimzed C version (previous page). Using
one core.

Experiment by P&H on a 2.6GHz Intel Core i7 with Turbo mode turned off.

1.7 GigaFLOPS (32x32)

6.4 GigaFLOPS (32x32)

14.6 GigaFLOPS (32x32)

Unoptimized

Cache
AVX + unroll + blocking (dividing the problem
into submatrices). This avoids cache misses.

13.6 GigaFLOPS (32x32)

0.8 GigaFLOPS (960x960)

2.5 GigaFLOPS (960x960)

5.1 GigaFLOPS (960x960)

12.0 GigaFLOPS (960x960)

Mutli-
core

AVX + unroll + blocking + multi core
(mutithreading using OpenMP)

23 GigaFLOPS (960x960, 2 cores)
44 GigaFLOPS (960x960, 4 cores)

174 GigaFLOPS (960x960, 16 cores)

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

29

Part II
MIMD, Multicore,
and Clusters

Future perspective:
MIMD, SIMD, ILP, and Caches

“For x86 computers, we expect to see two additional cores per chip
every two years and the SIMD width to double every four years.”

Hennessy & Patterson, Computer Architecture – A
Quantitative Approach, 5th edition, 2013 (page 263)

We must understand and utilize both MIMD and
SIMD to gain maximal speedups in the future,
although MIMD (multicore) has gained much more
attention lately.

The previous example showed that how we program
for ILP and caches, also matters significantly.

Part I
SIMD, Multithreading,
and GPUs

Part III
Parallelization
in Practice

David Broman
dbro@kth.se

30

Part II
MIMD, Multicore,
and Clusters

Summary

Thanks for listening!

Some key take away points:

•  SIMD and GPUs can efficiently parallelize
problems that have data-level parallelism

•  MIMD, Multicores, and Clusters can be used to
parallelize problems that have task-level parallelism.

•  In the future, we should try to combine and use both
SIMD and MIMD!

