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Part I 
SIMD, Multithreading, 
and GPUs 

Part III 
Parallelization 
in Practice 

David Broman 
dbro@kth.se 

4 

Part II 
MIMD, Multicore, 
and Clusters 

Agenda 

Part I 
 

SIMD, Multithreading, and GPUs 

Part III 
 

Parallelization in Practice 

Part II 
 

MIMD, Multicore, and Clusters 

DLP TLP 

DLP TLP + 



Part I 
SIMD, Multithreading, 
and GPUs 

Part III 
Parallelization 
in Practice 

David Broman 
dbro@kth.se 

5 

Part II 
MIMD, Multicore, 
and Clusters 

Part I 
 

SIMD, Multithreading, and GPUs 

Acknowledgement: The structure and several of the good examples are derived from the book 
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy 

DLP 
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Part II 
MIMD, Multicore, 
and Clusters 

SISD, SIMD, and MIMD (Revisited) 
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SISD 
 

E.g. Intel  
Pentium 4 

Data-level parallelism. Examples 
are multimedia extensions (e.g., 
SSE, streaming SIMD 
extension), vector processors.  

SIMD 

MISD 
 

No examples today 

MIMD 
Task-level parallelism. 
Examples are multicore and 
cluster computers 

 

E.g. Intel  
Core i7 

 

E.g. SSE  
Instruction in x86 

Graphical Unit Processors 
(GPUs) are both SIMD and 
MIMD 
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Part II 
MIMD, Multicore, 
and Clusters 

Subword Parallelism and  
Multimedia Extensions 

Subword parallelism is when a wide 
data word is operated on in parallel.  

This is the same as SIMD or 
data-level parallelism.  

Subword 
Parallelism 

NEON multimedia extension for ARMv7 and ARMv8  
(32 registers 8 bytes wide or 16 registers 16 bytes wide) 

Instruction 32-bit data 32-bit data 32-bit data 32-bit data 

One instruction operates on 
multiple data items.  

MMX (MutliMedia eXtension), first SIMD by Intel Pentium 
processors (introduced 1997). Only on Integers. 

3D Now! AMD, included single-precision floating-point (1998) 

SSE (Streaming SIMD Extension) introduced by Intel in 
Pentium III (year 1999). Included single-precision FP.  

AVX (Advanced Vector Extension), supported by both Intel 
and AMD (processors available in 2011). Added support for 
256 bits and double-precision FP. 
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Part II 
MIMD, Multicore, 
and Clusters 

Streaming SIMD Extension (SSE) and 
Advanced Vector Extension (AVX) 

AVX introduced three-operand format  
Meaning: %ymm4 = %ymm0 + %ymm1 

addpd %xmm0, %xmm4 

In SSE (and the later version SSE2), assembly 
instructions are using two-operand format.  

meaning: %xmm4 = %xmm4 + %xmm0 
Note the reversed order (Intel assembly in general) 

Registers (e.g. %xmm4) are 128-bits in SSE/SEE2.  

vaddpd  %ymm0, %ymm1, %ymm4 
vmovapd %ymm4, (%r11) 

Added the “v” for vector to distinguish 
AVX from SSE and renamed registers 
to %ymm that are now 256-bit   “pd” means Packed Double precision FP. It can 

operate on as many FP that fits in the register 
Question: How many FP additions 
does vaddpd perform in parallel?  Answer: 4  

Moves the result to the memory address stored in 
%r11 (a 64-bit register). Stores the four 64-bit FP 
in consecutive order in memory. 

E 
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Part II 
MIMD, Multicore, 
and Clusters 

Vector Processors 

Vector  
Processors 

Older, but elegant version if SIMD. Dates back to the 
supercomputers in the 70s (Seymour Cray) 

Vector processors have large vector registers, e.g., 32 
vector registers, each having 64 64-bit elements. 

MUL 
Element 1 

ADD 
Element 1 

Stall 

MUL 
Element 2 

ADD 
Element 2 

Stall 

Loop, 
branch 
etc. 

MUL 
Element 1 

ADD 
Element 1 

MUL 
Element 2 

MUL 
Element 3 

ADD 
Element 2 

MUL 
element 0 

ADD 
Element 3 

MUL 
element 0 

Sequential code in a 
loop. Stall between 
instructions.  

In a vector processor, 
operations are pipelines. 
Stall only once per vector 
operation. 

Efficient use of memory 
and low instruction 
bandwidth give good 
energy characteristics. 
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Part II 
MIMD, Multicore, 
and Clusters 

Recall the idea of a  
multi-issue uniprocesor 

Thread A Thread B Thread C 

Slot 1 
Slot 2 
Slot 3 

Time 

Executes only one hardware thread 
(context switching must be done in 
software) 

Typically, all functional units cannot 
be fully utilized in a single-threaded 
program (white space is unused 
slot/functional unit). 
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Part II 
MIMD, Multicore, 
and Clusters 

Hardware Multithreading  

Slot 1 
Slot 2 
Slot 3 

Time 

Slot 1 
Slot 2 
Slot 3 

Time 

Thread A Thread B Thread C In a multithreaded processor, several hardware 
threads share the same functional units. 

Coarse-grained multithreading, 
switches threads only at costly 
stalls, e.g., last-level cache misses.  

The purpose of multithreading is to hide latencies 
and avoid stalls due to cache misses etc. 

Fine-grained multithreading 
switches between hardware 
threads every cycle. Better 
utilization.    

Cannot overcome throughput 
losses in short stalls.  
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Part II 
MIMD, Multicore, 
and Clusters 

Simultaneous multithreading (SMT) 

Slot 1 
Slot 2 
Slot 3 

Time 

Thread A Thread B Thread C Simultaneous multithreading (SMT) combines 
multithreading with a multiple-issue, dynamically 
scheduled pipeline. 

Can fill in the wholes that multiple-
issue cannot utilize with cycles 
from other hardware threads. Thus, 
better utilization. 

Example: Hyper-threading is 
Intel's name and implementation of 
SMT. That is why a processor can 
have 2 real cores, but the OS 
shows 4 cores (4 hardware 
threads). 
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Part II 
MIMD, Multicore, 
and Clusters 

Graphical Processing Units (GPUs) 
A Graphical Processing Unit (GPU) utilizes multithreading, 
MIMD, SIMD, and ILP. The main form of parallelism that can 
be used is data-level parallelism. 

CUDA (Compute Unified Device Architecture) is a 
parallel computing platform and programming model 
from NVIDIA. 

CUDA 
GPU 

All parallelism are expressed as CUDA threads. 
Therefore, the model is also called  
Single Instruction Multiple Thread (SIMT). 

A GPU consists of a set of multithreaded SIMD 
processors (called streaming multiprocessor using 
NVIDIA terms). For instance 16 processors. 

The main idea is to execute a massive number of threads and to use 
multithreading to hide latency. However, the latest GPUs also include a caches. 
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Part II 
MIMD, Multicore, 
and Clusters 

Part II 
 

MIMD, Multicore, and Clusters 

Acknowledgement: The structure and several of the good examples are derived from the book 
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy 

TLP 
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Part II 
MIMD, Multicore, 
and Clusters 

Shared Memory Multiprocessor (SMP) 
A Shared Memory Multiprocessor (SMP) has a single 
physical address space across all processors.  

An SMP is almost always the same as a multicore processor. 

Processor 
Core 

Memory 

L1 Cache 

L2 Cache 

Processor 
Core 

L1 Cache 

Processor 
Core 

L1 Cache 

Processors (cores) in a SMP 
communicate via shared memory. 

In a uniform memory access (UMA) 
multiprocessor, the latency of 
accessing memory does not depend 
on the processor. 

In a nonuniform memory access 
(NUMA) multiprocessor, memory can 
be divided between processor and 
result in different latencies. 
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Part II 
MIMD, Multicore, 
and Clusters 

Cache Coherence 
Different cores’ local caches could result in that different cores see 
different values for the same memory address.  
This is called the cache coherency problem. 

Processor 
Core 1 

Cache 

Memory 

Processor 
Core 2 

Cache 

Processor 
Core 1 

Cache 

Memory 

Processor 
Core 2 

Cache 

Processor 
Core 1 

Cache 

Memory 

Processor 
Core 2 

Cache 

Time step 1 Time step 2 Time step 3 

0 

0 

Core 1 reads 
memory position X. 
The value is stored 
in Core 1’s cache. 

0 

0 0 

Core 2 reads 
memory position X. 
The value is stored 
in Core 2’s cache. 

Core 1 
writes to 
memory.  

1 

1 0 

Core 2 sees 
the incorrect 
value. 
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Part II 
MIMD, Multicore, 
and Clusters 

Snooping Protocol 
Cache coherence can be enforced using a cache coherence protocol. For 
instance a write invalidate protocol, such as the snooping protocol.  

Processor 
Core 1 

Cache 

Memory 

Processor 
Core 2 

Cache 

Processor 
Core 1 

Cache 

Memory 

Processor 
Core 2 

Cache 

Processor 
Core 1 

Cache 

Memory 

Processor 
Core 2 

Cache 

Time step 2 Time step 2 Time step 3 

0 

0 

1 

1 

Core 1 
writes to 
memory.  

1 

1 

Core 2 now tries to read the 
variable, it gets a cache miss 
and loads the new value from 
memory (heavily simplified 
example) 

0 

Core 2 reads 
memory position X. 
The value is stored 
in Core 2’s cache. 

The write 
invalidates 
the cache 
line of other 
processors. 

1 
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Part II 
MIMD, Multicore, 
and Clusters 

False Sharing 

 

Processor Core 1 

Cache 

Memory 

 

Processor Core 2 

Cache line Z 

X = 1 

Y = 0 

Cache 

Cache line Z 

X = 1 

Y = 0 

Assume that Core 1 and Core 2 share a 
cache line Z.  

Core 1 reads and writes to X and 
Core 2 reads and writes to Y. 

This will result in that the 
cache coherence protocol 
will invalidate the other 
core’s cache line, even if the 
cores are not interested in 
the other ones variable! 

This is called false sharing. 
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Part II 
MIMD, Multicore, 
and Clusters 

Processes, Threads, and Cores 

Operating 
System 

Process 

Process 

Process 

Thread 

Thread 

Thread 

Thread 

C

Memory 
 

C C C

C C C C

A modern operating system (OS) 
can execute several processes 
concurrently. 

A process context include its own 
virtual memory space, IO files, real-
only code, heap, shared library, 
process id (PID) etc. 

Each process can have N number of 
concurrent threads. The thread context 
includes thread ID, stack, stack pointer, 
program counter etc. 

Note: All threads share the process 
context, including virtual memory etc. 

Concurrent threads are 
scheduled by the OS to execute 
in parallel on different cores. 

Hands-on: 
Activity 
Monitor 
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Part II 
MIMD, Multicore, 
and Clusters 

Programming with Threads and 
Shared Variables 

#include <stdio.h> 
#include <pthread.h> 
 
volatile int counter = 0; 
 
void *count(void *data){ 
  int i; 
  int max = *((int*)data); 
  for(i=0; i<max; i++) 
    counter++; 
  pthread_exit(NULL); 
} 
 
 

int main(){ 
  pthread_t tid1, tid2; 
  int max; 
  max = 40000; 
  pthread_create(&tid1, NULL, count, &max); 
   
  max = 60000; 
  pthread_create(&tid2, NULL, count, &max); 
 
  pthread_join(tid1, NULL);   
  pthread_join(tid2, NULL); 
  printf("counter = %d\n", counter); 
  pthread_exit(NULL); 
} 

POSIX threads (pthreads) is a common way of programming 
concurrency and utilizing multicores for parallel computation. 

Creates two threads, each is 
counting a shared variable. 

Exercise: What is the output? 
Hands-on: 

Show 
example 

Answer: Different values each time… 

E 
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Part II 
MIMD, Multicore, 
and Clusters 

Semaphores 
A semaphore is a global variable that can hold a nonnegative integer 
value. It can only be changed by the following two operations.  

P(s) P(s): If s > 0, then decrement s and return.  
If s = 0, then wait until s > 0, then decrement 
s and return. 

V(s) V(s): Increment s.  

Note that the check 
and return of P(s) 
and increment of 
V(s) must be atomic, 
meaning that 
appears to be 
“instantaneously”.  

Semaphores were invented y Edsger Dijkstra, who was originally from the 
Neatherlands. P and V is supposed to come from the Dutch words 
Proberen (to test) and Verlogen (to increment). 
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Part II 
MIMD, Multicore, 
and Clusters 

Mutex 
A semaphore can be used for mutual exclusion, meaning that only one thread can access a 
particular resource at the same time. Such a binary semaphore is called a mutex. 

semaphore s = 1 
 
One of more threads execute: 
  P(s); 
     Code to  
     protected... 
  V(s); 

A global binary semaphore is initiated to 1.  

One or more threads are executing code that 
needs to be protected. 

P(s), also called wait(s), checks if the semaphore 
is nonzero. If so, lock the mutex, else wait. 

V(s), also called post, unlocks the mutex and 
increments the semaphore. 

In the critical section, it is ensured that not more than 
one thread can execute the code at the same time. 
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Part II 
MIMD, Multicore, 
and Clusters 

Programming with Threads and 
Shared Variables with Semaphores 

volatile int counter = 0; 
sem_t *mutex; 
 
void *count(void *data){ 
  int i; 
  int max = *((int*)data); 
  for(i=0; i<max; i++){ 
    sem_wait(mutex); /* P()*/ 
    counter++; 
    sem_post(mutex); /* V(m)*/ 
  } 
  pthread_exit(NULL); 
} 

int main(){ 
  pthread_t tid1, tid2; 
  int max; 
 
  mutex = sem_open("/semaphore", O_CREAT,  
                   O_RDWR, 1);   
  max = 40000; 
  pthread_create(&tid1, NULL, count, &max); 
  max = 60000; 
  pthread_create(&tid2, NULL, count, &max); 
 
  pthread_join(tid1, NULL);   
  pthread_join(tid2, NULL); 
  printf("counter = %d\n", counter); 
  sem_close(mutex); 
  pthread_exit(NULL); 
} 

Hands-on: 
Show 

example 

Exercise: Is it correct 
this time? 

E 

Problem. We update the value 
max, that is also shared… 
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Part II 
MIMD, Multicore, 
and Clusters 

Programming with Threads and 
Shared Variables with Semaphores 

volatile int counter = 0; 
sem_t *mutex; 
 
void *count(void *data){ 
  int i; 
  int max = *((int*)data); 
  for(i=0; i<max; i++){ 
    sem_wait(mutex); /*P()*/ 
    counter++; 
    sem_post(mutex); /*V(m)*/ 
  } 
  pthread_exit(NULL); 
} 

int main(){ 
  pthread_t tid1, tid2; 
  int max1 = 40000; 
  int max2 = 60000; 
 
  mutex = sem_open("/semaphore", O_CREAT,  
                  0777, 1);   
  pthread_create(&tid1, NULL, count, &max1);   
  pthread_create(&tid2, NULL, count, &max2); 
 
  pthread_join(tid1, NULL);   
  pthread_join(tid2, NULL); 
  printf("counter = %d\n", counter); 
  sem_close(mutex); 
  pthread_exit(NULL); 
} Hands-on: 

Show 
example 

Correct solution… 

E 

Simple solution. Use different 
variables. 
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Part II 
MIMD, Multicore, 
and Clusters 

Clusters and Warehouse Scale Computers 
E 

A cluster is a set of computers that are 
connected over a local area network (LAN). 
May be viewed as one large multiprocessor. 

Photo by Robert Harker 

Warehouse-Scale Computers are very large cluster that 
can include 100 000 servers that act as one giant computer 
(e.g., Facebook, Google, Apple). 

Computer 
1 

Computer 
2 

Computer 
N 

Computer 
N-1 

Clusters do not communicate over shared memory (as 
for SMP) but using message passing. 

The MapReduce and Hadoop framework are 
popular for batch processing. 
 
 
 
 
 

1. Map applies a programmer defined function on all 
data items. 
2. Reduce collects the output and collapse the data 
using another programmer defined function.  

Both tasks are highly parallel. 
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Part II 
MIMD, Multicore, 
and Clusters 

Part III 
 

Parallelization in Practice 

DLP TLP + 
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Part II 
MIMD, Multicore, 
and Clusters 

General Matrix Multiplication (GEMM) 

void dgemm(int n, double* A, double* B, double* C){ 
  for(int i = 0; i < n; ++i)  
    for(int j = 0; j < n; ++j){ 
      double cij = C[i+j*n]; 
      for(int k = 0; k < n; k++) 
         cij += A[i+k*n] * B[k+j*n]; 
      C[i+j*n] = cij; 
    } 
} 

Hands-on: 
Show 

example 

Simple matrix multiplication 
Uses matrix size n as a 
parameter and single 
dimension for 
performance. 
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Part II 
MIMD, Multicore, 
and Clusters 

Parallelizing GEMM 

SIMD 
Use AVX instructions vaddpd and vmulpd 
to do 4 double precision floating-point 
operations in parallel. 
. 

For details see P&H, 5th edtion, sections 3.8, 4.12, 5.14, and 6.12 

AVX + unroll parts of the loop, so that the 
multiple-issue, out-of-order processor have 
more instructions to schedule. 

ILP 

Unoptimzed C version (previous page). Using 
one core. 

Experiment by P&H on a 2.6GHz Intel Core i7 with Turbo mode turned off.  

1.7 GigaFLOPS (32x32) 

6.4 GigaFLOPS (32x32) 

14.6 GigaFLOPS (32x32) 

Unoptimized 

Cache 
AVX + unroll + blocking (dividing the problem 
into submatrices). This avoids cache misses.  

13.6 GigaFLOPS (32x32) 

0.8 GigaFLOPS (960x960) 

2.5 GigaFLOPS (960x960) 

5.1 GigaFLOPS (960x960) 

12.0 GigaFLOPS (960x960) 

Mutli- 
core 

AVX + unroll + blocking + multi core 
(mutithreading using OpenMP) 

23 GigaFLOPS (960x960, 2 cores) 
44 GigaFLOPS (960x960, 4 cores) 

174 GigaFLOPS (960x960, 16 cores) 
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Part II 
MIMD, Multicore, 
and Clusters 

Future perspective:  
MIMD, SIMD, ILP, and Caches 

“For x86 computers, we expect to see two additional cores per chip 
every two years and the SIMD width to double every four years.” 

Hennessy & Patterson, Computer Architecture – A 
Quantitative Approach, 5th edition, 2013 (page 263) 

We must understand and utilize both MIMD and 
SIMD to gain maximal speedups in the future, 
although MIMD (multicore) has gained much more 
attention lately. 

The previous example showed that how we program 
for ILP and caches, also matters significantly.  
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Part II 
MIMD, Multicore, 
and Clusters 

Summary 

Thanks for listening! 

Some key take away points: 

•  SIMD and GPUs can efficiently parallelize 
problems that have data-level parallelism 

•  MIMD, Multicores, and Clusters can be used to 
parallelize problems that have task-level parallelism. 

•  In the future, we should try to combine and use both 
SIMD and MIMD! 


