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Scircuit analysis 
resistors 

connected in series and parallel 
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Series-connected resistors – 
equivalent resistance 

Series connected resistors – equivalent resistance 
Series connected resistors R1 R2 ... Rn can in calculating be replaced by a 
equivalent resistance RERS which is the sum of the resistors.  
The sum is obviously larger than the largest of the resistors.  

Series-connected components, are characterized in that they are interconnected 
in one point. 
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Parallel connected resistors – 
equivalent resistans 

Parallel connected resistors – equivalent resistance 
Parallel connected components have both  connections in common with each other. 
Parallel resistors R1 R2 ... Rn can in calculating be replaced by a equivalent 
resistance  RERS.  

Parallel connected components, are characterized in that they have both 
connections in common with each other. 
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Two Parallel connected resistors 

If one particularly has two parallel resistors  R1 and R2 the formula can be 
reformulated as : 

Do you have more parallel resistors than two, repeat this formula for two 
resistors at a time until you get the equivalent resistance for all. 
In parallel connection the equivalent resistance always becomes smaller than the 
smallest of the constituent parallel connected resistors.  
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Examle – series and parallel 
connection 
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Parallel circuit 
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Equivalent resistance 
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From the emf U one only sees the current I, it could likely go to a lonely resistor, an 
equivalent resistance RERS. Ohms law gives: 
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This is how to derive the expression for 
the equivalent resistance. 

The calculated equivalent resistor 
RERS = 56,8 Ω gives the same total 
current I = 0,21 A as calculated 
earlier. 
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Current branching 

The current is divided between parallel branches inversely with the branch  
resistance (follows the least resistance). 
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Example – not a parallel circuit 

Two electric pumps A and B are placed 150 m from each other. A and then B, are 
powered by 230V from a socket 300 m away. A pump draws the current 30 A and B 15 
A. See figure.  

On paper it looks as if the motors are connected in parallel, but then you have not 
counted the resistance found in long lines. To the right of the figure, it is 
complemented with resistance symbols for the wiring resistances.  
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Example – not a parallel circuit 

When the engines work, and thus consumes current, there will be a voltage drop in 
the cables :  U > U1 > U2 

How big will the voltages U1 and U2 be when both pumps are working? 

The wires are of copper with the resistivity 0,018 [Ωmm2/m]. R = ρ·l /A  
R1 = 0,018×300/10 = 0,54 Ω 
R2 = 0,018×150/10 = 0,27  Ω  
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Example – not a parallel circuit 

U1 = U - 2×R1×45 = 230 - 2×0,54×45 = 181,4 V  

U2 = U1 - 2×R2×15 = 181,4 - 2×0,27×15 = 173,3 V  
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If pump A is off? 

How big will the voltage be at pump B, U'2, when pump A is off? 

U'2 = U - 2×15×( R1 + R2 ) = 230 - 2×15×( 0,54 + 0,27 ) = 205,7 V 

U'2 =  205,7 V         (U2 =  173,3 V)     – this change will be noticed! 
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Series circuit 

Same I through all resistors.  

Series circuit is being characterized that it’s the same current that goes through all the 
resistors. One example is the Christmas tree lights. If a bulb is broken so it is of 
course no current through it, and because it is a series circuit in this case same current 
in all resistors will mean that no other lamp will light!  

Same current in the series circuit 
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Series circuit 

How big are voltages U1 and U2? 

RERS = R1 +R2 = 100 + 200 = 300 

U = U1 + U2 = 4 + 8 = 12 V  

I = U/RERS = 12/300 = 0,04 A 
U1 = I×R1 = 0,04×100 = 4 V 
U2 = I×R2 = 0,04×200 = 8 V 

Same current in the series circuit 
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Voltage division formula 

Divided 
Voltage 

Total 
Voltage 

Voltage 
division 
factor 

Since all resistors have the same current for series connection, the voltage falls 
proportional to their resistances. Using Ohm's law (twice), one can develop a 
formula, the voltage division formula, which can be used to quickly find out the 
voltage drop across a resistor in series with other resistors. 

According to the voltage divider formula you get a divided voltage, for example U1 
across the resistor R1, by multiplying the total voltage U with a voltage division 
factor. This voltage division factor is the resistance R1 divided by the sum of all the 
resistors that are in the series connection. 
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Voltage divider with a load 
In cars the battery voltage is 12 V.  Suppose you need voltage 8 V to an electronic 
equipment in a car.  One can then lower the voltage with a voltage divider. 

In the figure above to right, the resistor R3 = 200 Ω symbolizes the electronic 
equipment.  
To use the voltage division formula one now has to see R2 and R3 as parallell 
connected. It is this equivalent resitance R'2 that is in series with R1.  
The divided voltage U'2 for a voltage divider with load is now calculated to 6 V, 2 V 
lower than for the voltage divider without load.  
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Voltage divider with a load 

For a voltage divider to maintain it’s divided voltage when it is loaded, it is 
required that the connected load has a much higher resistance than the 
resistors included in the voltage divider. 

( In example R3 = 2000 Ω  would give U2 = 7,74 which is closer to the 
unloaded value 8,0) . 

(R3 = 20000 Ω  would give U2 = 7,97 which is even closer to 8,0). 
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Example – voltage divider for lamps 
Two 8 V 0,25 A lamps are used in a car that has a 12 V battery. Lamps are parallel 
connected and then in series via a resistor to the 12 V battery. 

a) Calculate the series resistor R so that the lamp voltage will be correct, 8 V. 

Current through series resistor will be the sum of the currents to the lamps. 
I = 0,25 + 0,25 = 0,5 A 

Ohms law gives: R = 4/0,5 = 8 Ω 

Voltage drop over resistor shall be 12 - 8 = 4 V 
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Example – voltage divider for lamps 

b) Suppose that one of the lamps breaks – how big will then the voltage over 
the other lamp be?  

The lamp resistance is calculated from rated data:  RL = 8/0,25 = 32 Ω 

The series resistor and the working lamp forms a voltage divider. The lamp 
voltage is calculated with the voltage divider formula : 
 
U'L = E×RL/( R + RL ) = 12×32/(32+8) = 9,6 V  

What do you think will happen to the single lamp?  
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Current branching formula 
In the same way as with the voltage 
division formula, one can derive a current 
branching formula. 

In practice, however, one has less 
advantage of a current branching formula. 
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An application of the voltage divider formula 

Now you know the voltage 
division formula - then it's 
time to show the 
Linearisation method … 

Hopelessly 
nonlinear? 

NTC-termistor 

http://upload.wikimedia.org/wikipedia/commons/9/95/NTC_Thermistor_RT_Characteristic1.svg
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Linearization of NTC thermistor 
NTC thermistors temperature dependence is very strong, the 
temperature coefficient is ten times greater than for example Nickel. 
The temperature dependence is also highly nonlinear. 

50281 Ω 

9176 Ω 
2642 Ω 
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Linearization 
If a fixed resistor R is connected in series with the NTC 
thermistor RT this combination will have a lesser 
nonlinearity than the thermistor alone. We will let the two 
resistors form a voltage divider.  

If the temperature increases, the thermistor's resistance decrease, and then the 
portion of the voltage drops across the fixed resistor UR increases and therefore 
gives a proportional measure of temperature. 

RR
REU

T
R +
=

UR(RT) is a monotonic decreasing function of temperature, and RT(ϑ) is also 
monotonic decreasing. The combined function RT(ϑ) therefore has the potential 
of being somewhat linear, if you give R a suitable value. 

Voltage division formula: 

R RT 
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Linearization example 
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We measure thermistor resistance at three evenly distributed temperatures, eg.  
0 °C, 50 °C, och 100 °C.  RT0 = 50281 Ω, RT50 = 9176 Ω, och RT100 = 2642 Ω. 

If there is linearity then the voltages from the voltage divider UR0, UR50, and 
UR100 also be "evenly distributed".  From voltage division we get: 

If R is solved: 
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After insertion of our numerical values, we get  R = 6362 Ω. 
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The result - surprisingly linear! 

6362 Ω 

• The graph is slightly s-shaped. 



NTC-thermistors. All possible ( and impossible ) embodiments 
are available! 
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Example - strain gauge 
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How do you measure such 
small resistance changes ∆R? 

http://upload.wikimedia.org/wikipedia/commons/5/53/Strain_gauge.svg


William Sandqvist  william@kth.se 

Wheatstone bridge – branched river 

Suppose 
R4 = Rx 

Balance, no current through the indicator UR4 = UR3 .  
Voltage division formula gives us: 
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At balance: 



Rx = ? 
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2

3
1 R

RRRX =



Rx = ? 
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Rx = ? 
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2

3
1 R

RRRX =

Ω== 87,9
1000

10987XR

The balance methood to determine Rx is 
simple to use but slow.  

It will work for temperature, but not if one would like to follow a resistive 
sensor that is used for mesuring a faster dynamical process. 
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(3.2) OHM’s law are often enough! 
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a) Calculate the resultant 
resistance RERS for the three 
parallel connected branches. 

b) Culculate current I and 
voltage U. 

c) Calculate the three currents I1 I2 and I3 together with the 
voltage U1 over 3 Ω-resistor. 
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OHM’s law … 
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OHM’s lag … 
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OHM’s lag … 
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OHM’s lag … 
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OHM’s lag … 
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OHM’s lag … 
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OHM’s lag … 
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OHM’s lag … 
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OHM’s lag … 
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632321 =⋅=⋅= IU OHM’s law was enough! 
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