IE1206 Embedded Electronics

Scircuit analysis resistors

 connected in series and parallel
Series-connected resistors equivalent resistance

Series connected resistors - equivalent resistance
Series connected resistors $R_{1} R_{2} \ldots R_{\mathrm{n}}$ can in calculating be replaced by a equivalent resistance $R_{\text {ERS }}$ which is the sum of the resistors.
The sum is obviously larger than the largest of the resistors.

Series-connected components, are characterized in that they are interconnected in one point.

Parallel connected resistors equivalent resistans

Parallel connected resistors - equivalent resistance
Parallel connected components have both connections in common with each other.
Parallel resistors $R_{1} R_{2} \ldots R_{\mathrm{n}}$ can in calculating be replaced by a equivalent resistance $R_{\text {ERS }}$.

Parallel connected components, are characterized in that they have both connections in common with each other.

Two Parallel connected resistors

If one particularly has two parallel resistors R_{1} and R_{2} the formula can be reformulated as :

$$
\begin{gathered}
\frac{1}{R_{\mathrm{ERS}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{R_{2}}{R_{2}} \cdot \frac{1}{R_{1}}+\frac{R_{1}}{R_{1}} \cdot \frac{1}{R_{2}}=\frac{R_{1}+R_{2}}{R_{1} \cdot R_{2}} \\
R_{\mathrm{ERS}}=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}
\end{gathered}
$$

Do you have more parallel resistors than two, repeat this formula for two resistors at a time until you get the equivalent resistance for all. In parallel connection the equivalent resistance always becomes smaller than the smallest of the constituent parallel connected resistors.

Examle - series and parallel connection

$$
R_{E R S}=\frac{R_{3} \cdot\left(R_{1}+R_{2}\right)}{R_{1}+R_{2}+R_{3}}=\frac{270 \cdot(110+160)}{110+160+270}=135 \Omega
$$

William Sandqvist william@kth.se

Parallel circuit

Same U over all resistors!

$$
\begin{gathered}
I_{1}=\frac{U}{R_{1}}=\frac{12}{120}=0,1 \quad I_{2}=\frac{U}{R_{2}}=\frac{12}{180}=0,067 \quad I_{3}=\frac{U}{R_{3}}=\frac{12}{270}=0,044 \\
I=I_{1}+I_{2}+I_{3}=0,1+0,067+0,044=0,21 \mathrm{~A}
\end{gathered}
$$

Eoulvatentresistance

From the emf U one only sees the current I, it could likely go to a lonely resistor, an equivalent resistance $R_{\text {ERS }}$. Ohms law gives:

$$
\begin{aligned}
& R_{E R S}=\frac{U}{I}=\frac{U}{I_{1}+I_{2}+I_{3}}=\frac{U}{\frac{U}{R_{1}}+\frac{U}{R_{2}}+\frac{U}{R_{3}}}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}=\frac{1}{\frac{1}{120}+\frac{1}{180}+\frac{1}{270}}=56,8 \Omega \\
& I=\frac{U}{R_{E R S}}=\frac{12}{56,8}=0,21 \mathrm{~A} \\
& \quad \frac{1}{R_{E R S}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
\end{aligned}
$$

The calculated equivalent resistor $R_{\text {ERS }}=56,8 \Omega$ gives the same total current $I=0,21 \mathrm{~A}$ as calculated earlier.

This is how to derive the expression for the equivalent resistance.

William Sandqvist william@kth.se

Current branching

The current is divided between parallel branches inversely with the branch resistance (follows the least resistance).

William Sandqvist william@kth.se

Example - not a parallel circuit

Two electric pumps A and B are placed 150 m from each other. A and then B, are powered by 230 V from a socket 300 m away. A pump draws the current 30 A and B 15 A. See figure.

On paper it looks as if the motors are connected in parallel, but then you have not counted the resistance found in long lines. To the right of the figure, it is complemented with resistance symbols for the wiring resistances.

Example - not a parallel circuit

When the engines work, and thus consumes current, there will be a voltage drop in the cables : $U>U_{1}>U_{2}$

How big will the voltages U_{1} and U_{2} be when both pumps are working?

The wires are of copper with the resistivity $0,018\left[\Omega \mathrm{~mm}^{2} / \mathrm{m}\right] . R=\rho \cdot l / \mathrm{A}$
$R_{1}=0,018 \times 300 / 10=0,54 \Omega$
$R_{2}=0,018 \times 150 / 10=0,27 \Omega$

Example - not a parallel circuit

$$
U_{1}=U-2 \times R_{1} \times 45=230-2 \times 0,54 \times 45=181,4 \mathrm{~V}
$$

$$
U_{2}=U_{1}-2 \times R_{2} \times 15=181,4-2 \times 0,27 \times 15=173,3 \mathrm{~V}
$$

If pump A is off?

How big will the voltage be at pump B, U^{\prime}, when pump A is off?

$$
\begin{aligned}
& U_{2}^{\prime}=U-2 \times 15 \times\left(R_{1}+R_{2}\right)=230-2 \times 15 \times(0,54+0,27)=205,7 \mathrm{~V} \\
& U_{2}^{\prime}=205,7 \mathrm{~V} \quad\left(U_{2}=173,3 \mathrm{~V}\right) \quad-\text { this change will be noticed! }
\end{aligned}
$$

William Sandqvist william@kth.se

Series circuit

Same I through all resistors.
Series circuit is being characterized that it's the same current that goes through all the resistors. One example is the Christmas tree lights. If a bulb is broken so it is of course no current through it, and because it is a series circuit in this case same current in all resistors will mean that no other lamp will light!

Series circuit

How big are voltages U_{1} and U_{2} ?

$$
\begin{gathered}
R_{\mathrm{ERS}}=R_{1}+R_{2}=100+200=300 \\
I=U / R_{\mathrm{ERS}}=12 / 300=0,04 \mathrm{~A} \\
U_{1}=I \times R_{1}=0,04 \times 100=4 \mathrm{~V} \\
U_{2}=I \times R_{2}=0,04 \times 200=8 \mathrm{~V} \\
U=U_{1}+U_{2}=4+8=12 \mathrm{~V}
\end{gathered}
$$

William Sandqvist william@kth.se

Voltage division formula

Since all resistors have the same current for series connection, the voltage falls proportional to their resistances. Using Ohm's law (twice), one can develop a formula, the voltage division formula, which can be used to quickly find out the voltage drop across a resistor in series with other resistors.

Voltage

According to the voltage divider formula you get a divided voltage, for example U_{1} across the resistor R_{1}, by multiplying the total voltage U with a voltage division factor. This voltage division factor is the resistance R_{1} divided by the sum of all the resistors that are in the series connection.

Voltage divider with a load

In cars the battery voltage is 12 V . Suppose you need voltage 8 V to an electronic equipment in a car. One can then lower the voltage with a voltage divider.

In the figure above to right, the resistor $R_{3}=200 \Omega$ symbolizes the electronic equipment.
To use the voltage division formula one now has to see R_{2} and R_{3} as parallell connected. It is this equivalent resitance R_{2}^{\prime} that is in series with R_{1}.
The divided voltage U_{2}^{\prime} for a voltage divider with load is now calculated to $6 \mathrm{~V}, 2 \mathrm{~V}$ lower than for the voltage divider without load.

William Sandqvist william@kth.se

Voltage divider with a load

For a voltage divider to maintain it's divided voltage when it is loaded, it is required that the connected load has a much higher resistance than the resistors included in the voltage divider.
(In example $R_{3}=2000 \Omega$ would give $U_{2}=7,74$ which is closer to the unloaded value 8,0).
($R_{3}=20000 \Omega$ would give $U_{2}=7,97$ which is even closer to 8,0).

William Sandqvist william@kth.se

Example - voltage divider for lamps

Two 8 V 0,25 A lamps are used in a car that has a 12 V battery. Lamps are parallel connected and then in series via a resistor to the 12 V battery.

a) Calculate the series resistor R so that the lamp voltage will be correct, 8 V .

Current through series resistor will be the sum of the currents to the lamps.
$I=0,25+0,25=0,5 \mathrm{~A}$
Voltage drop over resistor shall be 12-8=4V
Ohms law gives: $R=4 / 0,5=8 \Omega$

Example - voltage divider for lamps

b) Suppose that one of the lamps breaks - how big will then the voltage over the other lamp be?

The lamp resistance is calculated from rated data: $R_{\mathrm{L}}=8 / 0,25=32 \Omega$
The series resistor and the working lamp forms a voltage divider. The lamp voltage is calculated with the voltage divider formula :
$U_{\mathrm{L}}^{\prime}=E \times R_{\mathrm{L}} /\left(R+R_{\mathrm{L}}\right)=12 \times 32 /(32+8)=9,6 \mathrm{~V}$
What do you think will happen to the single lamp?

William Sandqvist william@kth.se

Current branching formula

In the same way as with the voltage division formula, one can derive a current branching formula.

In practice, however, one has less advantage of a current branching formula.

$$
(1)=\frac{\frac{U}{I \cdot \frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}}}{R_{1}}=I \cdot \frac{R_{2}}{R_{1}+R_{2}}
$$

Same voltage
over parallel branches

$$
\begin{aligned}
& 1=\| / R_{\text {ERS }} \\
& l_{1}=u / R_{1} \\
& l_{2}=U / R_{2} \\
& 1=l_{1}+l_{2}
\end{aligned}
$$

William Sandqvist william@kth.se

An application of the voltage divider formula

NTC-termistor

Now you know the voltage division formula - then it's time to show the Linearisation method ...

Linearization of NTC thermistor

William Sandqvist william@kth.se

Linearization

If a fixed resistor R is connected in series with the NTC thermistor R_{T} this combination will have a lesser nonlinearity than the thermistor alone. We will let the two resistors form a voltage divider.

If the temperature increases, the thermistor's resistance decrease, and then the portion of the voltage drops across the fixed resistor U_{R} increases and therefore gives a proportional measure of temperature.

Voltage division formula:

$$
U_{R}=E \frac{R}{R_{T}+R}
$$

$U_{\mathrm{R}}\left(R_{\mathrm{T}}\right)$ is a monotonic decreasing function of temperature, and $R_{\mathrm{T}}(\vartheta)$ is also monotonic decreasing. The combined function $R_{\mathrm{T}}(\vartheta)$ therefore has the potential of being somewhat linear, if you give R a suitable value.

Linearization example

We measure thermistor resistance at three evenly distributed temperatures, eg. $0^{\circ} \mathrm{C}$, $50^{\circ} \mathrm{C}$, och $100^{\circ} \mathrm{C} . R_{\mathrm{T} 0}=50281 \Omega, R_{\mathrm{T} 50}=9176 \Omega$, och $R_{\mathrm{T} 100}=2642 \Omega$. If there is linearity then the voltages from the voltage divider $U_{\mathrm{R} 0}, U_{\mathrm{R} 50}$, and $U_{\text {R100 }}$ also be "evenly distributed". From voltage division we get:

$$
E \frac{R}{R_{\mathrm{T} 50}+R}-Z \not \frac{R}{R_{\mathrm{T} 0}+R}=\nexists \frac{R}{R_{\mathrm{T} 100}+R}-\not Z \frac{R}{R_{\mathrm{T} 50}+R}
$$

If R is solved:

$$
R=\frac{R_{\mathrm{T} 0} R_{\mathrm{T} 50}+R_{\mathrm{T} 50} R_{\mathrm{T} 100}-2 R_{\mathrm{T} 0} R_{\mathrm{T} 100}}{R_{\mathrm{T} 0}+R_{\mathrm{T} 100}-2 R_{\mathrm{T} 50}}
$$

After insertion of our numerical values, we get $R=6362 \Omega$.

The result - surprisingly linear!

William Sandqvist william@kth.se

NTC-thermistors. All possible (and impossible) embodiments are available!

William Sandqvist william@kth.se

Example - strain gauge

How do you measure such small resistance changes ΔR ?

$$
R=\rho \frac{l \cdot 4}{D^{2} \cdot \pi} \quad \Delta R \approx k \cdot d l
$$

William Sandqvist william@kth.se

Wheatstone bridge - branched river

Suppose $R_{4}=R_{\mathrm{x}}$

Balance, no current through the indicator $U_{R 4}=U_{R 3}$. Voltage division formula gives us:

$$
\begin{aligned}
& \sum \frac{R_{4}}{R_{1}+R_{4}}=\AA \frac{R_{3}}{R_{2}+R_{3}} \Leftrightarrow R_{4} R_{2}+R_{4} R_{3}=R_{3} R_{1}+R_{3} R_{4} \\
& \text { At balance: } R_{4}=R_{1} \frac{R_{3}}{R_{2}}
\end{aligned}
$$

$R_{\mathrm{x}}=$?

$$
R_{X}=R_{1} \frac{R_{3}}{R_{2}}
$$

William Sandqvist william@kth.se

$R_{x}=?$

$$
\begin{gathered}
R_{X}=R_{1} \frac{R_{3}}{R_{2}} \\
R_{X}=\frac{987}{\frac{1000}{1000}}=9,87 \Omega
\end{gathered}
$$

William Sandqvist william@kth.se

It will work for temperature, but not if one would like to follow a resistive sensor that is used for mesuring a faster dynamical process.

William Sandqvist william@kth.se

(3.2) OHM's law are often enough!

a) Calculate the resultant resistance $R_{\text {ERS }}$ for the three parallel connected branches.
b) Culculate current I and voltage U.

c) Calculate the three currents $I_{1} I_{2}$ and I_{3} together with the voltage U_{1} over 3Ω-resistor.

OHM's law ...

William Sandqvist william@kth.se

OHM's lag ...

$$
\begin{aligned}
& \frac{1}{R_{E R S}}=\frac{1}{8}+\frac{1}{1+3}+\frac{1}{8}=\frac{4}{8} \Rightarrow R_{E R S}=\frac{8}{4}=2 \\
& I=\frac{E}{1+R_{E R S}}=\frac{12}{1+2}=4 \\
& U=I \cdot R_{E R S}=4 \cdot 2=8 \\
& I_{1}=\frac{U}{8}=\frac{8}{8}=1
\end{aligned}
$$

OHM's lag ...

$$
\begin{aligned}
& \frac{1}{R_{E R S}}=\frac{1}{8}+\frac{1}{1+3}+\frac{1}{8}=\frac{4}{8} \Rightarrow R_{E R S}=\frac{8}{4}=2 \\
& I=\frac{E}{1+R_{E R S}}=\frac{12}{1+2}=4 \\
& U=I \cdot R_{E R S}=4 \cdot 2=8 \\
& I_{1}=\frac{U}{8}=\frac{8}{8}=1 \quad I_{2}=\frac{U}{1+3}=\frac{8}{1+3}=2
\end{aligned}
$$

OHM's lag ...

$$
\begin{aligned}
& \frac{1}{R_{E R S}}=\frac{1}{8}+\frac{1}{1+3}+\frac{1}{8}=\frac{4}{8} \Rightarrow R_{E R S}=\frac{8}{4}=2 \\
& I=\frac{E}{1+R_{E R S}}=\frac{12}{1+2}=4 \\
& U=I \cdot R_{E R S}=4 \cdot 2=8 \\
& I_{1}=\frac{U}{8}=\frac{8}{8}=1 \quad I_{2}=\frac{U}{1+3}=\frac{8}{1+3}=2 \quad I_{3}=\frac{U}{8}=\frac{8}{8}=1
\end{aligned}
$$

OHM's lag ...

$$
\begin{aligned}
& \frac{1}{R_{E R S}}=\frac{1}{8}+\frac{1}{1+3}+\frac{1}{8}=\frac{4}{8} \Rightarrow R_{E R S}=\frac{8}{4}=2 \\
& I=\frac{E}{1+R_{E R S}}=\frac{12}{1+2}=4 \\
& U=I \cdot R_{E R S}=4 \cdot 2=8 \\
& I_{1}=\frac{U}{8}=\frac{8}{8}=1 \quad I_{2}=\frac{U}{1+3}=\frac{8}{1+3}=2 \quad I_{3}=\frac{U}{8}=\frac{8}{8}=1 \\
& U_{1}=I_{2} \cdot 3=2 \cdot 3=6
\end{aligned}
$$

OHM's lag ...

$$
\begin{aligned}
& \frac{1}{R_{E R S}}=\frac{1}{8}+\frac{1}{1+3}+\frac{1}{8}=\frac{4}{8} \Rightarrow R_{E R S}=\frac{8}{4}=2 \\
& I=\frac{E}{1+R_{E R S}}=\frac{12}{1+2}=4 \\
& U=I \cdot R_{E R S}=4 \cdot 2=8 \\
& I_{1}=\frac{U}{8}=\frac{8}{8}=1 \quad I_{2}=\frac{U}{1+3}=\frac{8}{1+3}=2 \quad I_{3}=\frac{U}{8}=\frac{8}{8}=1 \\
& U_{1}=I_{2} \cdot 3=2 \cdot 3=6 \quad \text { OHM's law was enough! }
\end{aligned}
$$

William Sandqvist william@kth.se

