Lecture 7

Douglas Wikström KTH Stockholm dog@csc.kth.se

March 6, 2015

► RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for

Rabin

Semantic Security (1/3)

- ► RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for
- ▶ Intuitively, we want to leak no information of the encrypted plaintext.

Diffie-Hellman

Semantic Security (1/3)

- ► RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.
- ▶ Intuitively, we want to leak no **knowledge** of the encrypted plaintext.

Diffie-Hellman

Semantic Security (1/3)

- ► RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for
- Intuitively, we want to leak no knowledge of the encrypted plaintext.
- ▶ In other words, no function of the plaintext can efficiently be guessed notably better from its ciphertext than without it.

Semantic Security (2/3)

$\operatorname{Exp}_{\mathcal{CS},\mathcal{A}}^b$ (Semantic Security Experiment).

- 1. Generate Public Key. $(pk, sk) \leftarrow Gen(1^n)$.
- 2. Adversarial Choice of Messages. $(m_0, m_1, s) \leftarrow A(pk)$.
- 3. **Guess Message.** Return the first output of $A(E_{pk}(m_b), s)$.

Semantic Security (2/3)

 $\operatorname{Exp}_{\mathcal{CS},A}^b$ (Semantic Security Experiment).

- 1. Generate Public Key. $(pk, sk) \leftarrow Gen(1^n)$.
- 2. Adversarial Choice of Messages. $(m_0, m_1, s) \leftarrow A(pk)$.
- 3. **Guess Message.** Return the first output of $A(E_{pk}(m_b), s)$.

Definition. A cryptosystem CS = (Gen, E, D) is said to be **semantically secure** if for every polynomial time algorithm A

$$|\Pr[\operatorname{Exp}_{\mathcal{CS},A}^0 = 1] - \Pr[\operatorname{Exp}_{\mathcal{CS},A}^1 = 1]|$$

is negligible.

Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!

Rabin

Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that $\mathcal{CS} = (\mathsf{Gen}, \mathsf{E}, \mathsf{D})$ is a semantically secure cryptosystem.

Then the related cryptosystem where a t(n)-list of messages, with t(n) polynomial, is encrypted by **repeated independent encryption** of each component using the **same public key** is also semantically secure.

Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that $\mathcal{CS} = (\mathsf{Gen}, \mathsf{E}, \mathsf{D})$ is a semantically secure cryptosystem.

Then the related cryptosystem where a t(n)-list of messages, with t(n) polynomial, is encrypted by **repeated independent encryption** of each component using the **same public key** is also semantically secure.

Semantic security is useful!

The RSA Assumption

Definition. The RSA assumption states that if:

- 1. N = pq factors into two randomly chosen primes p and q of the same bit-size.
- 2. e is in $\mathbb{Z}_{\phi(N)}^*$,
- 3. m is randomly chosen in \mathbb{Z}_N^* ,

then for every polynomial time algorithm A

$$Pr[A(N, e, m^e \mod N) = m]$$

is negligible.

Semantically Secure ROM-RSA (1/2)

Suppose that $f: \{0,1\}^n \to \{0,1\}^n$ is a randomly chosen function (a random oracle).

- ▶ **Key Generation.** Choose a random RSA key pair ((N, e), (p, q, d)), with $\log_2 N = n$.
- ▶ **Encryption.** Encrypt a plaintext $m \in \{0,1\}^n$ by choosing $r \in \mathbb{Z}_N^*$ randomly and computing

$$(u,v)=(r^e \bmod N, f(r)\oplus m).$$

Decryption. Decrypt a ciphertext (u, v) by

$$m = v \oplus f(u^d)$$
.

Semantically Secure RSA in the ROM (2/2)

- ▶ We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

Semantically Secure RSA in the ROM (2/2)

- ▶ We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

Solutions.

▶ Using a "optimal" padding the first problem can be reduced. See standard OAEP+.

Semantically Secure RSA in the ROM (2/2)

- ▶ We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

Solutions.

- ► Using a "optimal" padding the first problem can be reduced. See standard OAEP+.
- ▶ Using a scheme with much lower rate, the second problem can be removed.

Rabin's Cryptosystem (1/3)

Key Generation.

- ▶ Choose *n*-bit primes p and q such that p, $q = 3 \mod 4$ randomly and define N = pq.
- Output the key pair (N, (p, q)), where N is the public key and (p, q) is the secret key.

Rabin's Cryptosystem (2/3)

Encryption. Encrypt a plaintext m by computing

$$c = m^2 \mod N$$
.

Decryption. Decrypt a ciphertext c by computing

$$m = \sqrt{c} \mod N$$
.

Rabin's Cryptosystem (2/3)

Encryption. Encrypt a plaintext m by computing

$$c = m^2 \mod N$$

Rabin

Decryption. Decrypt a ciphertext c by computing

$$m = \sqrt{c} \mod N$$
.

There are **four** roots, so which one should be used?

Rabin's Cryptosystem (3/3)

Suppose y is a quadratic residue modulo p.

$$\left(\pm y^{(p+1)/4}\right)^2 = y^{(p+1)/2} \mod p$$

$$= y^{(p-1)/2}y \mod p$$

$$= \left(\frac{y}{p}\right)y$$

$$= y \mod p$$

Rabin

In Rabin's cryptosystem:

- Find roots for $y_p = y \mod p$ and $y_q = y \mod q$.
- ▶ Combine roots to get the four roots modulo N. Choose the "right" root and output the plaintext.

Security of Rabin's Cryptosystem

Theorem. Breaking Rabin's cryptosystem is equivalent to factoring.

Idea.

- 1. Choose random element r.
- 2. Hand r^2 mod N to adversary.
- 3. Consider outputs r' from the adversary such that $(r')^2 = r^2 \mod N$. Then $r' \neq \pm r \mod N$, with probability 1/2, in which case gcd(r'-r, N) gives a factor of N.

A Goldwasser-Micali Variant of Rabin

Theorem [CG98]. If factoring is hard and r is a random quadratic residue modulo N, then for every polynomial time algorithm A

$$\Pr[A(N, r^2 \bmod N) = \mathsf{lsb}(r)]$$

is negligible.

▶ **Encryption.** Encrypt a plaintext $m \in \{0,1\}$ by choosing a random quadratic residue r modulo N and computing

$$(u,v)=(r^2 \bmod N, \mathsf{lsb}(r) \oplus m) .$$

Decryption. Decrypt a ciphertext (u, v) by

$$m = v \oplus \operatorname{lsb}(\sqrt{u})$$
 where \sqrt{u} is a quadratic residue.

Diffie-Hellman Key Exchange (1/3)

Diffie and Hellman asked themselves:

How can two parties efficiently agree on a secret key using only **public** communication?

Diffie-Hellman Key Exchange (2/3)

Construction.

Let G be a cyclic group of order q with generator g.

- ▶ Alice picks $a \in \mathbb{Z}_q$ randomly, computes $y_a = g^a$ and hands y_a to Bob.
 - ▶ Bob picks $b \in \mathbb{Z}_q$ randomly, computes $y_b = g^b$ and hands y_b to Alice.
- 2. \blacktriangleright Alice computes $k = y_b^a$.
 - ▶ Bob computes $k = y_2^{\tilde{b}}$.
- 3. The joint secret key is k.

Diffie-Hellman Key Exchange (3/3)

Problems.

- Susceptible to man-in-the-middle attack without authentication.
- ▶ How do we map a random element $k \in G$ to a random symmetric key in $\{0,1\}^n$?

The El Gamal Cryptosystem (1/2)

Definition. Let G be a cyclic group of order q with generator g.

▶ The **key generation** algorithm chooses a random element $x \in \mathbb{Z}_q$ as the private key and defines the public key as

$$y = g^{x}$$
.

▶ The **encryption** algorithm takes a message $m \in G$ and the public key y, chooses $r \in \mathbb{Z}_q$, and outputs the pair

$$(u, v) = E_{v}(m, r) = (g^{r}, y^{r}m)$$
.

► The **decryption** algorithm takes a ciphertext (*u*, *v*) and the secret key and outputs

$$m = D_x(u, v) = vu^{-x}$$
.

The El Gamal Cryptosystem (2/2)

- ▶ El Gamal is essentially Diffie-Hellman + OTP.
- ► Homomorphic property (with public key y)

$$\mathsf{E}_{\mathsf{v}}(m_0, r_0) \mathsf{E}_{\mathsf{v}}(m_1, r_1) = \mathsf{E}_{\mathsf{v}}(m_0 m_1, r_0 + r_1)$$
.

This property is very important in the construction of cryptographic protocols!

Discrete Logarithm (1/2)

Definition. Let G be a cyclic group of order q and let g be a generator G. The **discrete logarithm** of $y \in G$ in the basis g (written $\log_g y$) is defined as the unique $x \in \{0,1,\ldots,q-1\}$ such that

$$y = g^{x}$$
.

Compare with a "normal" logarithm! ($\ln y = x \text{ iff } y = e^x$)

Example. 7 is a generator of \mathbb{Z}_{12} additively, since $\gcd(7,12)=1$.

Rabin

What is $\log_7 3$?

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7,12) = 1.

Rabin

What is $\log_7 3$? $(9 \cdot 7 = 63 = 3 \mod 12$, so $\log_7 3 = 9$)

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7,12) = 1.

Rabin

What is $\log_7 3$? $(9 \cdot 7 = 63 = 3 \mod 12$, so $\log_7 3 = 9$)

Example. 7 is a generator of \mathbb{Z}_{13}^* .

What is log₇ 9?

Rabin

Discrete Logarithm (2/2)

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7,12) = 1.

What is $\log_7 3$? $(9 \cdot 7 = 63 = 3 \mod 12$, so $\log_7 3 = 9$)

Example. 7 is a generator of \mathbb{Z}_{13}^* .

What is $\log_7 9$? $(7^4 = 9 \mod 13, \text{ so } \log_7 9 = 4)$

Discrete Logarithm Assumption

Let G_{q_n} be a cyclic group of prime order q_n such that $\lfloor \log_2 q_n \rfloor = n$ for $n = 2, 3, 4, \ldots$, and denote the family $\{G_{q_n}\}_{n \in \mathbb{N}}$ by G.

Definition. The **Discrete Logarithm (DL) Assumption** in G states that if generators g_n and y_n of G_{q_n} are randomly chosen, then for every polynomial time algorithm A

$$\Pr\left[A(g_n,y_n) = \log_{g_n} y_n\right]$$

is negligible.

Discrete Logarithm Assumption

Let G_{q_n} be a cyclic group of prime order q_n such that $|\log_2 q_n| = n$ for $n=2,3,4,\ldots$, and denote the family $\{G_{a_n}\}_{n\in\mathbb{N}}$ by G.

Definition. The **Discrete Logarithm (DL) Assumption** in G states that if generators g and y of G are randomly chosen, then for every polynomial time algorithm A

$$\Pr\left[A(g,y) = \log_g y\right]$$

is negligible.

We usually remove the indices from our notation!