Lecture 7

Douglas Wikström KTH Stockholm dog@csc.kth.se

March 6, 2015

Semantic Security (1/3)

- RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.

Semantic Security (1/3)

- RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.
- Intuitively, we want to leak no information of the encrypted plaintext.

Semantic Security (1/3)

- RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.
- Intuitively, we want to leak no knowledge of the encrypted plaintext.

Semantic Security (1/3)

- RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.
- Intuitively, we want to leak no knowledge of the encrypted plaintext.
- In other words, no function of the plaintext can efficiently be guessed notably better from its ciphertext than without it.

Semantic Security (2/3)

$\operatorname{Exp}_{\mathcal{C S}, A}^{b}$ (Semantic Security Experiment).

1. Generate Public Key. (pk, sk) $\leftarrow \operatorname{Gen}\left(1^{n}\right)$.
2. Adversarial Choice of Messages. $\left(m_{0}, m_{1}, s\right) \leftarrow A(\mathrm{pk})$.
3. Guess Message. Return the first output of $A\left(\mathrm{E}_{\mathrm{pk}}\left(m_{b}\right), s\right)$.

Semantic Security (2/3)

$\operatorname{Exp}_{\mathcal{C S}, A}^{b}$ (Semantic Security Experiment).

1. Generate Public Key. (pk, sk) $\leftarrow \operatorname{Gen}\left(1^{n}\right)$.
2. Adversarial Choice of Messages. $\left(m_{0}, m_{1}, s\right) \leftarrow A(\mathrm{pk})$.
3. Guess Message. Return the first output of $A\left(\mathrm{E}_{\mathrm{pk}}\left(m_{b}\right), s\right)$.

Definition. A cryptosystem $\mathcal{C S}=($ Gen $, \mathrm{E}, \mathrm{D})$ is said to be semantically secure if for every polynomial time algorithm A

$$
\left|\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{C S}, A}^{0}=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{C}, A}^{1}=1\right]\right|
$$

is negligible.

Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!

Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that $\mathcal{C S}=(\mathrm{Gen}, \mathrm{E}, \mathrm{D})$ is a semantically secure cryptosystem.
Then the related cryptosystem where a $t(n)$-list of messages, with $t(n)$ polynomial, is encrypted by repeated independent encryption of each component using the same public key is also semantically secure.

Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that $\mathcal{C S}=(\mathrm{Gen}, \mathrm{E}, \mathrm{D})$ is a semantically secure cryptosystem.

Then the related cryptosystem where a $t(n)$-list of messages, with $t(n)$ polynomial, is encrypted by repeated independent encryption of each component using the same public key is also semantically secure.

Semantic security is useful!

The RSA Assumption

Definition. The RSA assumption states that if:

1. $N=p q$ factors into two randomly chosen primes p and q of the same bit-size,
2. e is in $\mathbb{Z}_{\phi(N)}^{*}$,
3. m is randomly chosen in \mathbb{Z}_{N}^{*},
then for every polynomial time algorithm A

$$
\operatorname{Pr}\left[A\left(N, e, m^{e} \bmod N\right)=m\right]
$$

is negligible.

Semantically Secure ROM-RSA (1/2)

Suppose that $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a randomly chosen function (a random oracle).

- Key Generation. Choose a random RSA key pair $((N, e),(p, q, d))$, with $\log _{2} N=n$.
- Encryption. Encrypt a plaintext $m \in\{0,1\}^{n}$ by choosing $r \in \mathbb{Z}_{N}^{*}$ randomly and computing

$$
(u, v)=\left(r^{e} \bmod N, f(r) \oplus m\right)
$$

- Decryption. Decrypt a ciphertext (u, v) by

$$
m=v \oplus f\left(u^{d}\right)
$$

Semantically Secure RSA in the ROM $(2 / 2)$

- We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

Semantically Secure RSA in the ROM $(2 / 2)$

- We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

Solutions.

- Using a "optimal" padding the first problem can be reduced. See standard OAEP+.

Semantically Secure RSA in the ROM $(2 / 2)$

- We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

Solutions.

- Using a "optimal" padding the first problem can be reduced. See standard OAEP+.
- Using a scheme with much lower rate, the second problem can be removed.

Rabin's Cryptosystem (1/3)

Key Generation.

- Choose n-bit primes p and q such that $p, q=3 \bmod 4$ randomly and define $N=p q$.
- Output the key pair $(N,(p, q))$, where N is the public key and (p, q) is the secret key.

Rabin's Cryptosystem (2/3)

Encryption. Encrypt a plaintext m by computing

$$
c=m^{2} \bmod N
$$

Decryption. Decrypt a ciphertext c by computing

$$
m=\sqrt{c} \bmod N
$$

Rabin's Cryptosystem (2/3)

Encryption. Encrypt a plaintext m by computing

$$
c=m^{2} \bmod N
$$

Decryption. Decrypt a ciphertext c by computing

$$
m=\sqrt{c} \bmod N
$$

There are four roots, so which one should be used?

Rabin's Cryptosystem (3/3)

Suppose y is a quadratic residue modulo p.

$$
\begin{aligned}
\left(\pm y^{(p+1) / 4}\right)^{2} & =y^{(p+1) / 2} \bmod p \\
& =y^{(p-1) / 2} y \bmod p \\
& =\left(\frac{y}{p}\right) y \\
& =y \bmod p
\end{aligned}
$$

In Rabin's cryptosystem:

- Find roots for $y_{p}=y \bmod p$ and $y_{q}=y \bmod q$.
- Combine roots to get the four roots modulo N. Choose the "right" root and output the plaintext.

Security of Rabin's Cryptosystem

Theorem. Breaking Rabin's cryptosystem is equivalent to factoring.

Idea.

1. Choose random element r.
2. Hand $r^{2} \bmod N$ to adversary.
3. Consider outputs r^{\prime} from the adversary such that $\left(r^{\prime}\right)^{2}=r^{2} \bmod N$. Then $r^{\prime} \neq \pm r \bmod N$, with probability $1 / 2$, in which case $\operatorname{gcd}\left(r^{\prime}-r, N\right)$ gives a factor of N.

A Goldwasser-Micali Variant of Rabin

Theorem [CG98]. If factoring is hard and r is a random quadratic residue modulo N, then for every polynomial time algorithm A

$$
\operatorname{Pr}\left[A\left(N, r^{2} \bmod N\right)=\operatorname{Isb}(r)\right]
$$

is negligible.

- Encryption. Encrypt a plaintext $m \in\{0,1\}$ by choosing a random quadratic residue r modulo N and computing

$$
(u, v)=\left(r^{2} \bmod N, \operatorname{lsb}(r) \oplus m\right)
$$

- Decryption. Decrypt a ciphertext (u,v) by

$$
m=v \oplus \operatorname{lsb}(\sqrt{u}) \quad \text { where } \sqrt{u} \text { is a quadratic residue } .
$$

Diffie-Hellman Key Exchange (1/3)

Diffie and Hellman asked themselves:
How can two parties efficiently agree on a secret key using only public communication?

Diffie-Hellman Key Exchange (2/3)

Construction.

Let G be a cyclic group of order q with generator g.

1. Alice picks $a \in \mathbb{Z}_{q}$ randomly, computes $y_{a}=g^{a}$ and hands y_{a} to Bob.

- Bob picks $b \in \mathbb{Z}_{q}$ randomly, computes $y_{b}=g^{b}$ and hands y_{b} to Alice.

2. Alice computes $k=y_{b}^{a}$.

- Bob computes $k=y_{a}^{b}$.

3. The joint secret key is k.

Diffie-Hellman Key Exchange (3/3)

Problems.

- Susceptible to man-in-the-middle attack without authentication.
- How do we map a random element $k \in G$ to a random symmetric key in $\{0,1\}^{n}$?

The El Gamal Cryptosystem (1/2)

Definition. Let G be a cyclic group of order q with generator g.

- The key generation algorithm chooses a random element $x \in \mathbb{Z}_{q}$ as the private key and defines the public key as

$$
y=g^{x}
$$

- The encryption algorithm takes a message $m \in G$ and the public key y, chooses $r \in \mathbb{Z}_{q}$, and outputs the pair

$$
(u, v)=\mathrm{E}_{y}(m, r)=\left(g^{r}, y^{r} m\right) .
$$

- The decryption algorithm takes a ciphertext (u, v) and the secret key and outputs

$$
m=\mathrm{D}_{x}(u, v)=v u^{-x}
$$

The El Gamal Cryptosystem (2/2)

- El Gamal is essentially Diffie-Hellman + OTP.
- Homomorphic property (with public key y)

$$
\mathrm{E}_{y}\left(m_{0}, r_{0}\right) \mathrm{E}_{y}\left(m_{1}, r_{1}\right)=\mathrm{E}_{y}\left(m_{0} m_{1}, r_{0}+r_{1}\right) .
$$

This property is very important in the construction of cryptographic protocols!

Discrete Logarithm (1/2)

Definition. Let G be a cyclic group of order q and let g be a generator G. The discrete logarithm of $y \in G$ in the basis g (written $\log _{g} y$) is defined as the unique $x \in\{0,1, \ldots, q-1\}$ such that

$$
y=g^{x}
$$

Compare with a "normal" logarithm! ($\ln y=x$ iff $\left.y=e^{x}\right)$

Discrete Logarithm (2/2)

Example. 7 is a generator of \mathbb{Z}_{12} additively, since $\operatorname{gcd}(7,12)=1$. What is $\log _{7} 3$?

Discrete Logarithm (2/2)

Example. 7 is a generator of \mathbb{Z}_{12} additively, since $\operatorname{gcd}(7,12)=1$. What is $\log _{7} 3 ?\left(9 \cdot 7=63=3 \bmod 12\right.$, so $\left.\log _{7} 3=9\right)$

Discrete Logarithm (2/2)

Example. 7 is a generator of \mathbb{Z}_{12} additively, since $\operatorname{gcd}(7,12)=1$. What is $\log _{7} 3 ?\left(9 \cdot 7=63=3 \bmod 12\right.$, so $\left.\log _{7} 3=9\right)$

Example. 7 is a generator of \mathbb{Z}_{13}^{*}.
What is $\log _{7} 9$?

Discrete Logarithm (2/2)

Example. 7 is a generator of \mathbb{Z}_{12} additively, since $\operatorname{gcd}(7,12)=1$.
What is $\log _{7} 3 ?\left(9 \cdot 7=63=3 \bmod 12\right.$, so $\left.\log _{7} 3=9\right)$

Example. 7 is a generator of \mathbb{Z}_{13}^{*}.
What is $\log _{7} 9 ?\left(7^{4}=9 \bmod 13\right.$, so $\left.\log _{7} 9=4\right)$

Discrete Logarithm Assumption

Let $G_{q_{n}}$ be a cyclic group of prime order q_{n} such that $\left\lfloor\log _{2} q_{n}\right\rfloor=n$ for $n=2,3,4, \ldots$, and denote the family $\left\{G_{q_{n}}\right\}_{n \in \mathbb{N}}$ by G.

Definition. The Discrete Logarithm (DL) Assumption in G states that if generators g_{n} and y_{n} of $G_{q_{n}}$ are randomly chosen, then for every polynomial time algorithm A

$$
\operatorname{Pr}\left[A\left(g_{n}, y_{n}\right)=\log _{g_{n}} y_{n}\right]
$$

is negligible.

Discrete Logarithm Assumption

Let $G_{q_{n}}$ be a cyclic group of prime order q_{n} such that $\left\lfloor\log _{2} q_{n}\right\rfloor=n$ for $n=2,3,4, \ldots$, and denote the family $\left\{G_{q_{n}}\right\}_{n \in \mathbb{N}}$ by G.

Definition. The Discrete Logarithm (DL) Assumption in G states that if generators g and y of G are randomly chosen, then for every polynomial time algorithm A

$$
\operatorname{Pr}\left[A(g, y)=\log _{g} y\right]
$$

is negligible.
We usually remove the indices from our notation!

