Lecture 6

Douglas Wikström KTH Stockholm dog@csc.kth.se

February 27, 2015

Public-Key Cryptosystem

$$
\begin{aligned}
& c=\mathrm{E}_{\mathrm{pk}}(m) \quad m=\mathrm{D}_{\mathrm{sk}}(c) \\
& \text { Alice } \\
& \text { pk } \\
& \text { Bob }
\end{aligned}
$$

Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen, E, D) where,

- Gen is a probabilistic key generation algorithm that outputs key pairs (pk, sk),
- E is a (possibly probabilistic) encryption algorithm that given a public key pk and a message m in the plaintext space $\mathcal{M}_{\text {pk }}$ outputs a ciphertext c, and
- D is a decryption algorithm that given a secret key sk and a ciphertext c outputs a plaintext m,
such that $\mathrm{D}_{\mathrm{sk}}\left(\mathrm{E}_{\mathrm{pk}}(m)\right)=m$ for every $(\mathrm{pk}, \mathrm{sk})$ and $m \in \mathcal{M}_{\mathrm{pk}}$.

The RSA Cryptosystem (1/2)

Key Generation.

- Choose $n / 2$-bit primes p and q randomly and define $N=p q$.
- Choose e in $\mathbb{Z}_{\phi(N)}^{*}$ and compute $d=e^{-1} \bmod \phi(N)$.
- Output the key pair $((N, e),(p, q, d))$, where (N, e) is the public key and (p, q, d) is the secret key.

The RSA Cryptosystem (2/2)

Encryption. Encrypt a plaintext $m \in \mathbb{Z}_{N}^{*}$ by computing

$$
c=m^{e} \bmod N
$$

Decryption. Decrypt a ciphertext c by computing

$$
m=c^{d} \bmod N
$$

Why Does It Work?

$$
\left(m^{e} \bmod N\right)^{d} \bmod N=m^{e d} \bmod N
$$

Why Does It Work?

$$
\begin{aligned}
\left(m^{e} \bmod N\right)^{d} \bmod N & =m^{e d} \bmod N \\
& =m^{1+t \phi(N)} \bmod N
\end{aligned}
$$

Why Does It Work?

$$
\begin{aligned}
\left(m^{e} \bmod N\right)^{d} \bmod N & =m^{e d} \bmod N \\
& =m^{1+t \phi(N)} \bmod N \\
& =m^{1} \cdot\left(m^{\phi(N)}\right)^{t} \bmod N
\end{aligned}
$$

Why Does It Work?

$$
\begin{aligned}
\left(m^{e} \bmod N\right)^{d} \bmod N & =m^{e d} \bmod N \\
& =m^{1+t \phi(N)} \bmod N \\
& =m^{1} \cdot\left(m^{\phi(N)}\right)^{t} \bmod N \\
& =m \cdot 1^{t} \bmod N
\end{aligned}
$$

Why Does It Work?

$$
\begin{aligned}
\left(m^{e} \bmod N\right)^{d} \bmod N & =m^{e d} \bmod N \\
& =m^{1+t \phi(N)} \bmod N \\
& =m^{1} \cdot\left(m^{\phi(N)}\right)^{t} \bmod N \\
& =m \cdot 1^{t} \bmod N \\
& =m \bmod N
\end{aligned}
$$

Implementing RSA

- Modular arithmetic.
- Primality test.

Modular Arithmetic (1/2)

Basic operations on $O(n)$-bit integers using "school book" implementations.

Operation	Running time
Addition	$O(n)$
Subtraction	$O(n)$
Multiplication	$O\left(n^{2}\right)$
Modular reduction	$O\left(n^{2}\right)$

What about modular exponentiation?

Modular Arithmetic (2/2)

Square-and-Multiply.

SquareAndMultiply (x, e, N)
$1 \quad z \leftarrow 1$
$2 \quad i=$ index of most significant one
3 while $i \geq 0$ do
4
$z \leftarrow z \cdot z \bmod N$
if $e_{i}=1$
then $z \leftarrow z \cdot x \bmod N$
$6 \quad i \leftarrow i-1$
7 return z

Prime Number Theorem

The primes are relatively dense.

Prime Number Theorem

The primes are relatively dense.
Theorem. Let $\pi(m)$ denote the number of primes $0<p \leq m$. Then

$$
\lim _{m \rightarrow \infty} \frac{\pi(m)}{\frac{m}{\ln m}}=1
$$

Prime Number Theorem

The primes are relatively dense.
Theorem. Let $\pi(m)$ denote the number of primes $0<p \leq m$. Then

$$
\lim _{m \rightarrow \infty} \frac{\pi(m)}{\frac{m}{\ln m}}=1
$$

To generate a random prime, we repeatedly pick a random integer m and check if it is prime. It should be prime with probability $1 / \ln m$.

Legendre Symbol (1/2)

Definition. Given an odd integer $b \geq 3$, an integer a is called a quadratic residue modulo b if there exists an integer x such that $a=x^{2} \bmod b$.

Definition. The Legendre Symbol of an integer a modulo an odd prime p is defined by

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
0 & \text { if } a=0 \\
1 & \text { if } a \text { is a quadratic residue modulo } p \\
-1 & \text { if } a \text { is a quadratic non-residue modulo } p
\end{aligned}\right.
$$

Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

$$
\left(\frac{a}{p}\right)=a^{(p-1) / 2} \bmod p .
$$

Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

$$
\left(\frac{a}{p}\right)=a^{(p-1) / 2} \bmod p .
$$

Proof.

- If $a=y^{2} \bmod p$, then $a^{(p-1) / 2}=y^{p-1}=1 \bmod p$.

Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

$$
\left(\frac{a}{p}\right)=a^{(p-1) / 2} \bmod p .
$$

Proof.

- If $a=y^{2} \bmod p$, then $a^{(p-1) / 2}=y^{p-1}=1 \bmod p$.
- If $a^{(p-1) / 2}=1 \bmod p$ and b generates \mathbb{Z}_{p}^{*}, then $a^{(p-1) / 2}=b^{\times(p-1) / 2}=1 \bmod p$ for some x. Since b is a generator, $(p-1) \mid x(p-1) / 2$ and x must be even.

Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

$$
\left(\frac{a}{p}\right)=a^{(p-1) / 2} \bmod p
$$

Proof.

- If $a=y^{2} \bmod p$, then $a^{(p-1) / 2}=y^{p-1}=1 \bmod p$.
- If $a^{(p-1) / 2}=1 \bmod p$ and b generates \mathbb{Z}_{p}^{*}, then $a^{(p-1) / 2}=b^{\times(p-1) / 2}=1 \bmod p$ for some x. Since b is a generator, $(p-1) \mid x(p-1) / 2$ and x must be even.
- If a is a non-residue, then $a^{(p-1) / 2} \neq 1 \bmod p$, but $\left(a^{(p-1) / 2}\right)^{2}=1 \bmod p$, so $a^{(p-1) / 2}=-1 \bmod p$.

Jacobi Symbol

Definition. The Jacobi Symbol of an integer a modulo an odd integer $b=\prod_{i} p_{i}^{e_{i}}$, with p_{i} prime, is defined by

$$
\left(\frac{a}{b}\right)=\prod_{i}\left(\frac{a}{p_{i}}\right)^{e_{i}}
$$

Note that we can have $\left(\frac{a}{b}\right)=1$ even when a is a non-residue modulo b.

Properties of the Jacobi Symbol

Basic Properties.

$$
\begin{aligned}
\left(\frac{a}{b}\right) & =\left(\frac{a \bmod b}{b}\right) \\
\left(\frac{a c}{b}\right) & =\left(\frac{a}{b}\right)\left(\frac{c}{b}\right)
\end{aligned}
$$

Law of Quadratic Reciprocity. If a and b are odd integers, then

$$
\left(\frac{a}{b}\right)=(-1)^{\frac{(a-1)(b-1)}{4}}\left(\frac{b}{a}\right) .
$$

Supplementary Laws. If b is an odd integer, then

$$
\left(\frac{-1}{b}\right)=(-1)^{\frac{b-1}{2}} \quad \text { and } \quad\left(\frac{2}{b}\right)=(-1)^{\frac{b^{2}-1}{8}} .
$$

Computing the Jacobi Symbol (1/2)

The following assumes that $a \geq 0$ and that $b \geq 3$ is odd.
$\operatorname{JACOBI}(a, b)$
(1) if $a<2$
(2) return a
(3) $s \leftarrow 1$
(4) while a is even
(5) $\quad s \leftarrow s \cdot(-1)^{\frac{1}{8}\left(b^{2}-1\right)}$
(6) $\quad a \leftarrow a / 2$
(7) if $a<b$
(8) $\operatorname{SWAP}(a, b)$
(9) $\quad s \leftarrow s \cdot(-1)^{\frac{1}{4}(a-1)(b-1)}$
(10) return $s \cdot \mathrm{JACOBI}(a \bmod b, b)$

Solovay-Strassen Primality Test (1/2)

The following assumes that $n \geq 3$.
SolovayStrassen (n, r)
(1) for $i=1$ to r
(2) \quad Choose $0<a<n$ randomly.
(3) if $\left(\frac{a}{n}\right)=0$ or $\left(\frac{a}{n}\right) \neq a^{(n-1) / 2} \bmod n$
(4) return composite
(5) return probably prime

Solovay-Strassen Primality Test (2/2)

Analysis.

- If n is prime, then $0 \neq\left(\frac{a}{n}\right)=a^{(n-1) / 2} \bmod n$ for all $0<a<n$, so we never claim that a prime is composite.

Solovay-Strassen Primality Test (2/2)

Analysis.

- If n is prime, then $0 \neq\left(\frac{a}{n}\right)=a^{(n-1) / 2} \bmod n$ for all $0<a<n$, so we never claim that a prime is composite.
- If $\left(\frac{a}{n}\right)=0$, then $\left(\frac{a}{p}\right)=0$ for some prime factor p of n. Thus, $p \mid a$ and n is composite, so we never wrongly return from within the loop.

Solovay-Strassen Primality Test (2/2)

Analysis.

- If n is prime, then $0 \neq\left(\frac{a}{n}\right)=a^{(n-1) / 2} \bmod n$ for all $0<a<n$, so we never claim that a prime is composite.
- If $\left(\frac{a}{n}\right)=0$, then $\left(\frac{a}{p}\right)=0$ for some prime factor p of n. Thus, $p \mid a$ and n is composite, so we never wrongly return from within the loop.
- At most half of all elements a in \mathbb{Z}_{n}^{*} have the property that

$$
\left(\frac{a}{n}\right)=a^{(n-1) / 2} \bmod n
$$

Factoring

The obvious way to break RSA is to factor the public modulus N and recover the prime factors p and q.

- The number field sieve factors N in time

$$
\left.O\left(e^{(1.92+o(1))\left((\ln N)^{1 / 3}+(\ln \ln N)^{2 / 3}\right.}\right)\right)
$$

- The elliptic curve method factors N in time

$$
O\left(e^{(1+o(1)) \sqrt{2 \ln p \ln \ln p}}\right)
$$

Factoring

The obvious way to break RSA is to factor the public modulus N and recover the prime factors p and q.

- The number field sieve factors N in time

$$
\left.O\left(e^{(1.92+o(1))\left((\ln N)^{1 / 3}+(\ln \ln N)^{2 / 3}\right.}\right)\right)
$$

- The elliptic curve method factors N in time

$$
O\left(e^{(1+o(1)) \sqrt{2 \ln p \ln \ln p}}\right)
$$

Note that the latter only depends on the size of p !

Small Encryption Exponents

Suppose that $e=3$ is used by all parties as encryption exponent.

- Small Message. If m is small, then $m^{e}<N$. Thus, no reduction takes place, and m can be computed in \mathbb{Z} by taking the eth root.

Small Encryption Exponents

Suppose that $e=3$ is used by all parties as encryption exponent.

- Small Message. If m is small, then $m^{e}<N$. Thus, no reduction takes place, and m can be computed in \mathbb{Z} by taking the eth root.
- Identical Plaintexts. If a message m is encrypted under moduli N_{1}, N_{2}, N_{3}, and N_{4} as c_{1}, c_{2}, c_{3}, and c_{3}, then CRT implies a $c \in \mathbb{Z}_{N_{1} N_{2} N_{3} N_{4}}^{*}$ such that $c=c_{i} \bmod N_{i}$ and $c=m^{e} \bmod N_{1} N_{2} N_{3} N_{4}$ with $m<N_{i}$.

Additional Caveats

- Identical Moduli. If a message m is encrypted as c_{1} and c_{2} using distinct encryption exponents e_{1} and e_{2} with $\operatorname{gcd}\left(e_{1}, e_{2}\right)=1$, and a modulus N, then we can find a, b such that $a e_{1}+b e_{2}=1$ and $m=c_{1}^{a} c_{2}^{b} \bmod N$.

Additional Caveats

- Identical Moduli. If a message m is encrypted as c_{1} and c_{2} using distinct encryption exponents e_{1} and e_{2} with $\operatorname{gcd}\left(e_{1}, e_{2}\right)=1$, and a modulus N, then we can find a, b such that $a e_{1}+b e_{2}=1$ and $m=c_{1}^{a} c_{2}^{b} \bmod N$.
- Reiter-Franklin Attack. If e is small then encryptions of m and $f(m)$ for a polynomial $f \in \mathbb{Z}_{N}[x]$ allows efficient computation of m.

Additional Caveats

- Identical Moduli. If a message m is encrypted as c_{1} and c_{2} using distinct encryption exponents e_{1} and e_{2} with $\operatorname{gcd}\left(e_{1}, e_{2}\right)=1$, and a modulus N, then we can find a, b such that $a e_{1}+b e_{2}=1$ and $m=c_{1}^{a} c_{2}^{b} \bmod N$.
- Reiter-Franklin Attack. If e is small then encryptions of m and $f(m)$ for a polynomial $f \in \mathbb{Z}_{N}[x]$ allows efficient computation of m.
- Wiener's Attack. If $3 d<N^{1 / 4}$ and $q<p<2 q$, then N can be factored in polynomial time with good probability.

Factoring From Order of Multiplicative Group

Given N and $\phi(N)$, we can find p and q by solving

$$
\begin{aligned}
N & =p q \\
\phi(N) & =(p-1)(q-1)
\end{aligned}
$$

Factoring From Encryption \& Decryption Exponents (1/3)

- If $N=p q$ with p and q prime, then the CRT implies that

$$
x^{2}=1 \bmod N
$$

has four distinct solutions in \mathbb{Z}_{N}^{*}, and two of these are non-trivial, i.e., distinct from ± 1.

Factoring From Encryption \& Decryption Exponents (1/3)

- If $N=p q$ with p and q prime, then the CRT implies that

$$
x^{2}=1 \bmod N
$$

has four distinct solutions in \mathbb{Z}_{N}^{*}, and two of these are non-trivial, i.e., distinct from ± 1.

- If x is a non-trivial root, then

$$
(x-1)(x+1)=t N
$$

but $N \nmid(x-1),(x+1)$, so

$$
\operatorname{gcd}(x-1, N)>1 \quad \text { and } \quad \operatorname{gcd}(x+1, N)>1
$$

Factoring From Encryption \& Decryption Exponents (2/3)

- The encryption \& decryption exponents satisfy

$$
e d=1 \bmod \phi(N),
$$

so if we have ed $-1=2^{s} r$ with r odd, then

$$
\begin{aligned}
& (p-1)=2^{s_{p}} r_{p} \text { which divides } 2^{s} r \quad \text { and } \\
& (q-1)=2^{s_{q}} r_{q} \text { which divides } 2^{s} r .
\end{aligned}
$$

- If $v \in \mathbb{Z}_{N}^{*}$ is random, then $w=v^{r}$ is random in the subgroup of elements with order 2^{i} for some $0 \leq i \leq \max \left\{s_{p}, s_{q}\right\}$.

Factoring From Encryption \& Decryption Exponents (3/3)

Suppose $s_{p} \geq s_{q}$. Then for some $0<i<s_{p}$,

$$
w^{2^{i}}= \pm 1 \bmod q
$$

and

$$
w^{2^{i}} \bmod p
$$

is uniformly distributed in $\{1,-1\}$.

Conclusion.

$w^{2^{i}}(\bmod N)$ is a non-trivial root of 1 with probability $1 / 2$, which allows us to factor N.

