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Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen,E,D)
where,

◮ Gen is a probabilistic key generation algorithm that
outputs key pairs (pk, sk),

◮ E is a (possibly probabilistic) encryption algorithm that
given a public key pk and a message m in the plaintext space
Mpk outputs a ciphertext c , and

◮ D is a decryption algorithm that given a secret key sk and a
ciphertext c outputs a plaintext m,

such that Dsk(Epk(m)) = m for every (pk, sk) and m ∈ Mpk.
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The RSA Cryptosystem (1/2)

Key Generation.

◮ Choose n/2-bit primes p and q randomly and define N = pq.

◮ Choose e in Z∗
φ(N) and compute d = e−1 mod φ(N).

◮ Output the key pair ((N, e), (p, q, d)), where (N, e) is the
public key and (p, q, d) is the secret key.

DD2448 Foundations of Cryptography February 27, 2015



RSA Security of RSA

The RSA Cryptosystem (2/2)

Encryption. Encrypt a plaintext m ∈ Z∗
N by computing

c = me mod N .

Decryption. Decrypt a ciphertext c by computing

m = cd mod N .
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Why Does It Work?

(me mod N)d mod N = med mod N
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Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N

= m1 ·
(

mφ(N)
)t

mod N

= m · 1t mod N

= m mod N
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Implementing RSA

◮ Modular arithmetic.

◮ Primality test.
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Modular Arithmetic (1/2)

Basic operations on O(n)-bit integers using “school book”
implementations.

Operation Running time

Addition O(n)
Subtraction O(n)
Multiplication O(n2)
Modular reduction O(n2)

What about modular exponentiation?
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Modular Arithmetic (2/2)

Square-and-Multiply.

SquareAndMultiply(x , e,N)

1 z ← 1
2 i =index of most significant one
3 while i ≥ 0

do

4 z ← z · z mod N

5 if ei = 1
then z ← z · x mod N

6 i ← i − 1
7 return z
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Prime Number Theorem

The primes are relatively dense.
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Prime Number Theorem

The primes are relatively dense.

Theorem. Let π(m) denote the number of primes 0 < p ≤ m.
Then

lim
m→∞

π(m)
m
lnm

= 1 .
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Prime Number Theorem

The primes are relatively dense.

Theorem. Let π(m) denote the number of primes 0 < p ≤ m.
Then

lim
m→∞

π(m)
m
lnm

= 1 .

To generate a random prime, we repeatedly pick a random integer
m and check if it is prime. It should be prime with probability
1/ lnm.
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Legendre Symbol (1/2)

Definition. Given an odd integer b ≥ 3, an integer a is called a
quadratic residue modulo b if there exists an integer x such that
a = x2 mod b.

Definition. The Legendre Symbol of an integer a modulo an
odd prime p is defined by

(

a

p

)

=







0 if a = 0
1 if a is a quadratic residue modulo p

−1 if a is a quadratic non-residue modulo p

.
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .

Proof.

◮ If a = y2 mod p, then a(p−1)/2 = yp−1 = 1 mod p.
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .

Proof.

◮ If a = y2 mod p, then a(p−1)/2 = yp−1 = 1 mod p.

◮ If a(p−1)/2 = 1 mod p and b generates Z∗
p, then

a(p−1)/2 = bx(p−1)/2 = 1 mod p for some x . Since b is a
generator, (p − 1) | x(p − 1)/2 and x must be even.
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .

Proof.

◮ If a = y2 mod p, then a(p−1)/2 = yp−1 = 1 mod p.

◮ If a(p−1)/2 = 1 mod p and b generates Z∗
p, then

a(p−1)/2 = bx(p−1)/2 = 1 mod p for some x . Since b is a
generator, (p − 1) | x(p − 1)/2 and x must be even.

◮ If a is a non-residue, then a(p−1)/2 6= 1 mod p, but
(

a(p−1)/2
)2

= 1 mod p, so a(p−1)/2 = −1 mod p.
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Jacobi Symbol

Definition. The Jacobi Symbol of an integer a modulo an odd
integer b =

∏

i p
ei
i , with pi prime, is defined by

(a

b

)

=
∏

i

(

a

pi

)ei

.

Note that we can have
(

a
b

)

= 1 even when a is a non-residue
modulo b.
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Properties of the Jacobi Symbol

Basic Properties.

(a

b

)

=

(

a mod b

b

)

(ac

b

)

=
(a

b

)(c

b

)

.

Law of Quadratic Reciprocity. If a and b are odd integers, then

(a

b

)

= (−1)
(a−1)(b−1)

4

(

b

a

)

.

Supplementary Laws. If b is an odd integer, then
(

−1

b

)

= (−1)
b−1
2 and

(

2

b

)

= (−1)
b2−1

8 .
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Computing the Jacobi Symbol (1/2)

The following assumes that a ≥ 0 and that b ≥ 3 is odd.

Jacobi(a, b)
(1) if a < 2
(2) return a

(3) s ← 1
(4) while a is even

(5) s ← s · (−1)
1
8
(b2−1)

(6) a← a/2
(7) if a < b

(8) Swap(a,b)

(9) s ← s · (−1)
1
4
(a−1)(b−1)

(10) return s · Jacobi(a mod b, b)
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Solovay-Strassen Primality Test (1/2)

The following assumes that n ≥ 3.

SolovayStrassen(n, r)
(1) for i = 1 to r

(2) Choose 0 < a < n randomly.
(3) if

(

a
n

)

= 0 or
(

a
n

)

6= a(n−1)/2 mod n

(4) return composite

(5) return probably prime
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Solovay-Strassen Primality Test (2/2)

Analysis.

◮ If n is prime, then 0 6=
(

a
n

)

= a(n−1)/2 mod n for all
0 < a < n, so we never claim that a prime is composite.
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Solovay-Strassen Primality Test (2/2)

Analysis.

◮ If n is prime, then 0 6=
(

a
n

)

= a(n−1)/2 mod n for all
0 < a < n, so we never claim that a prime is composite.

◮ If
(

a
n

)

= 0, then
(

a
p

)

= 0 for some prime factor p of n. Thus,

p | a and n is composite, so we never wrongly return from
within the loop.

DD2448 Foundations of Cryptography February 27, 2015



RSA Security of RSA

Solovay-Strassen Primality Test (2/2)

Analysis.

◮ If n is prime, then 0 6=
(

a
n

)

= a(n−1)/2 mod n for all
0 < a < n, so we never claim that a prime is composite.

◮ If
(

a
n

)

= 0, then
(

a
p

)

= 0 for some prime factor p of n. Thus,

p | a and n is composite, so we never wrongly return from
within the loop.

◮ At most half of all elements a in Z∗
n have the property that

(a

n

)

= a(n−1)/2 mod n .
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Factoring

The obvious way to break RSA is to factor the public modulus N
and recover the prime factors p and q.

◮ The number field sieve factors N in time

O
(

e(1.92+o(1))((lnN)1/3+(ln lnN)2/3)
)

.

◮ The elliptic curve method factors N in time

O
(

e(1+o(1))
√
2 ln p ln ln p

)

.
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Factoring

The obvious way to break RSA is to factor the public modulus N
and recover the prime factors p and q.

◮ The number field sieve factors N in time

O
(

e(1.92+o(1))((lnN)1/3+(ln lnN)2/3)
)

.

◮ The elliptic curve method factors N in time

O
(

e(1+o(1))
√
2 ln p ln ln p

)

.

Note that the latter only depends on the size of p!
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Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.

◮ Small Message. If m is small, then me < N. Thus, no
reduction takes place, and m can be computed in Z by
taking the eth root.
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Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.

◮ Small Message. If m is small, then me < N. Thus, no
reduction takes place, and m can be computed in Z by
taking the eth root.

◮ Identical Plaintexts. If a message m is encrypted under
moduli N1, N2, N3, and N4 as c1, c2, c3, and c3, then CRT
implies a c ∈ Z∗

N1N2N3N4
such that c = ci mod Ni and

c = me mod N1N2N3N4 with m < Ni .
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Additional Caveats

◮ Identical Moduli. If a message m is encrypted as c1 and c2
using distinct encryption exponents e1 and e2 with
gcd(e1, e2) = 1, and a modulus N, then we can find a, b such
that ae1 + be2 = 1 and m = ca1c

b
2 mod N.
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◮ Identical Moduli. If a message m is encrypted as c1 and c2
using distinct encryption exponents e1 and e2 with
gcd(e1, e2) = 1, and a modulus N, then we can find a, b such
that ae1 + be2 = 1 and m = ca1c

b
2 mod N.

◮ Reiter-Franklin Attack. If e is small then encryptions of m
and f (m) for a polynomial f ∈ ZN [x ] allows efficient
computation of m.
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Additional Caveats

◮ Identical Moduli. If a message m is encrypted as c1 and c2
using distinct encryption exponents e1 and e2 with
gcd(e1, e2) = 1, and a modulus N, then we can find a, b such
that ae1 + be2 = 1 and m = ca1c

b
2 mod N.

◮ Reiter-Franklin Attack. If e is small then encryptions of m
and f (m) for a polynomial f ∈ ZN [x ] allows efficient
computation of m.

◮ Wiener’s Attack. If 3d < N1/4 and q < p < 2q, then N can
be factored in polynomial time with good probability.
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Factoring From Order of Multiplicative Group

Given N and φ(N), we can find p and q by solving

N = pq

φ(N) = (p − 1)(q − 1)
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Factoring From Encryption & Decryption Exponents (1/3)

◮ If N = pq with p and q prime, then the CRT implies that

x2 = 1 mod N

has four distinct solutions in Z∗
N , and two of these are

non-trivial, i.e., distinct from ±1.
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Factoring From Encryption & Decryption Exponents (1/3)

◮ If N = pq with p and q prime, then the CRT implies that

x2 = 1 mod N

has four distinct solutions in Z∗
N , and two of these are

non-trivial, i.e., distinct from ±1.

◮ If x is a non-trivial root, then

(x − 1)(x + 1) = tN

but N ∤ (x − 1), (x + 1), so

gcd(x − 1,N) > 1 and gcd(x + 1,N) > 1 .
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Factoring From Encryption & Decryption Exponents (2/3)

◮ The encryption & decryption exponents satisfy

ed = 1 mod φ(N) ,

so if we have ed − 1 = 2s r with r odd, then

(p − 1) = 2sp rp which divides 2s r and

(q − 1) = 2sq rq which divides 2s r .

◮ If v ∈ Z∗
N is random, then w = v r is random in the subgroup

of elements with order 2i for some 0 ≤ i ≤ max{sp , sq}.
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Factoring From Encryption & Decryption Exponents (3/3)

Suppose sp ≥ sq. Then for some 0 < i < sp,

w2i = ±1 mod q

and
w2i mod p

is uniformly distributed in {1,−1}.

Conclusion.

w2i (mod N) is a non-trivial root of 1 with probability 1/2, which
allows us to factor N.
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